Overview

• Building behavioral models in stages
• A 5th-order, 1-Bit ΣΔ modulator
 - Noise shaping
 - Complex loop filters
 - Stability
 - Voltage scaling

Building Models in Stages

• When modeling a complex system like a 5th-order ΣΔ modulator, model development proceeds in stages
 - Each stage builds on its predecessor

• The design goal is to detect and eliminate problems at the highest possible level of abstraction
 - Each successive stage consumes progressively more engineering time
Building Models in Stages

- Rework and reverification of early stage models because of problems found in later stages is expensive
 - Defective silicon is much more expensive (and often fatal)

- Don’t launch a multistage rework cycle every time you find a single bug

Building Models in Stages

- Our $\Sigma\Delta$ model development proceeds in stages:
 - Stage 0 gets to the starting line
 - Stage 1 develops a practical system built with ideal subcircuits
 - Stage 2 models key subcircuit nonidealities and translates the results into real-world subcircuit performance specifications
Building Models in Stages

- Real-world model development includes a critical stage 3:
 - Adding elements to earlier stages (hopefully only stage 2) to model significant surprises found in silicon

- The previous lecture introduced much of the stage 0 \(\Sigma\Delta \) model and 1-Bit quantization background
 - What other steps are needed to arrive at a successful design?

Stage 0

- Collect references
 - Important references
 - Readable references
 - Talk to veterans to find them and sort them

- Understand the readable references
 - Build a simple model of what you think you understand
 - Start building diagnostic infrastructure
Stage 0 Models

- You can’t just talk about stage 0 models with veterans and look at their stage 0 simulations
 - You’ve got to exercise and think with the model until you can begin to explain surprises by yourself
 - Then, in stage 1, you can ask a veteran more intelligent questions

- Stage 0 model code (download code used for last lecture) is 20% modulator loop code, 80% diagnostics
 - This ratio holds for all stages of modeling

Stage 1

- In stage 1, we’ll study a model for a practical $\Sigma\Delta$ modulator topology built with ideal blocks

- Stage 1 model focus
 - Signal amplitudes
 - Stability
 - Worst-case inputs
 - Unstable systems can’t graduate to stage 2
 - Quantization noise shaping
Stage 1 Models

Building the infrastructure to generate worst-case inputs and analyze model responses is of critical importance in stage 1

- You must tap into your organization’s technical wisdom to learn what those worst-case real world inputs are

Models can only tell you the right answers if you ask them the right questions!

ΔΣ Modulator Filter Design

- Procedure
 - Establish requirements
 - Design noise-transfer function, NTF
 - Determine loop-filter, H
 - Synthesize filter
 - Evaluate performance, stability

Modulator Specification

• Example: Audio ADC
 - Dynamic range DR 16 Bits
 - Signal bandwidth B 20 kHz
 - Nyquist frequency f_N 44.1 kHz
 - Modulator order L 5
 - Oversampling ratio $M = f_s/f_N$ 64
 - Sampling frequency f_s 2.822 MHz

• The oversampling ratio M chosen based on
 - SQNR > 120dB (20dB below thermal noise)
 - Experience (e.g. Figure 4.14 in Adams & Schreier)

Modulator Block Diagram

Gain Block

Loop filter
Noise Transfer Function, NTF(z)

% stop-band attenuation ...
% reduce if design is not stable

Rstop = 80;
[b,a] = cheby2(L, Rstop, 1/M, 'high');

% normalize (for causality)
[b] = b/b(1);
NTF = filt(b, a, 1/fs);

% check stability (mag < 1.5)
[mag] = bode(NTF, pi*fs)

>> mag = 1.32

Loop-Filter, H(z)

H = inv(NTF) - filt(1, 1, 1/fs);

% check causality ... y(1) should be 0
y = impulse(H);

>> y = 0
Filter Topology

Rounded Filter Coefficients

\[\begin{align*}
 a_1 &= 1; & k_1 &= 1; & b_1 &= 1/1024; \\
 a_2 &= 1/2; & k_2 &= 1; & b_2 &= 1/16-1/64; \\
 a_3 &= 1/4; & k_3 &= 1/2; \\
 a_4 &= 1/8; & k_4 &= 1/4; \\
 a_5 &= 1/8; & k_5 &= 1/8;
\end{align*} \]

5th-Order Noise Shaping

\begin{align*}
|A_m| (\text{dBWN}) & \text{ or Integrated Noise (dBV)} \\
0 & -40 & -80 & -120 & -160
\end{align*}

\begin{align*}
\text{Frequency [kHz]} & \\
0 & 300 & 600 & 900 & 1200 & 1500
\end{align*}

That's noise shaping! – let's look closer...

100mVrms, 30kHz input
30000 point DFT
30 averages

3 Q\text{noise} zeroes

only 82nVrms from DC to 20kHz
5th-Order Noise Shaping

- The 1Vrms 1-Bit quantization noise is shaped to sum to only 82nVrms in the audio band
 - That's over 140dB of dynamic range
- ΣΔ modulators are usually designed so that their quantization noise is negligible in the frequency band of interest
 - Thermal noise sources dominate
- Let's look at the loop filter transfer function...
5th-Order Loop Filter

- Lots of low frequency gain
- 0dB gain at 378kHz

Frequency [kHz]

upward phase jumps imply poles just outside the unit circle
5th-Order Loop Filter

- The fact that $H(z)$ has poles outside the unit circle doesn’t mean that the entire ΣΔ modulator is unstable
 - The modulator’s stability depends on its closed loop poles

- All loop variables ($\int_1, \int_2, \int_3, \int_4, \int_5$) have the same closed loop poles
 - If one is stable, they all are
Modulator Root-Locus

The nonlinear modulator system operates at some effective gain \(G \) between points A and B:

\[
\begin{align*}
\text{v}_{\text{IN}} & \rightarrow H(z) \rightarrow \text{d}_{\text{OUT}} \\
1 \text{ or } -1
\end{align*}
\]

- \(G \) may be a function of both \(v_{\text{IN}} \) and \(g \)
- The modulator closed loop poles are the zeroes of the function \(1+HG \):
 \[
 \frac{\text{D}_{\text{OUT}}(z)}{\text{V}_{\text{IN}}(z)} = \frac{\text{HG}/g}{1 + \text{HG}}
 \]
- We'll plot closed loop poles in the z-plane as \(G \) varies from 0.1 to 10 in equal log steps ...
Modulator Root-Locus

unit circle

start (G=0.1) unstable
Modulator Root-Locus

Closed-loop poles move inside the unit circle for $G > 0.4$

stop (G=10) stable
Effective Gain

• If our linearized model is valid (a big if)
 - For $G > 0.4$, the modulator system is stable
 - For $G < 0.4$, it's unstable

• Presumably, the noise shapes in slides 18 and 23 were produced by a stable system
 - We'll evaluate G for 5kHz and 20kHz sinusoidal inputs varying in amplitude from -30dBV to $+5$dBV…
 - While we're at it, we'll capture minimum and maximum signal levels throughout the modulator

Sinewave Input Effective Gain

Both 5kHz and 20kHz look "DC like" to a 3MHz modulator
Effective Gain

- As the input amplitude increases, the signal at the quantizer input grows, and G falls
 - Just over 1Vrms, G falls to below 0.4, and
 - The system becomes unstable
 - Loop variables grow without bound (opamps in a real analog circuit will just run up to power supply rails)
 - Noise shaping is lost

- It's highly unlikely that audio sinewaves provide the worst case inputs for stability
 - To evaluate any model, you've got to know what the worst case inputs are

- Let's look at inputs that aren't “dc-like” and aren't sinusoidal (square waves)...
Modulator Stability

- The sensitivity of ΣΔ modulators to high frequency square wave inputs was first discovered on breadboards
 - No one thought to provide such inputs to early modulator simulations

- Worst-case square wave frequencies are roughly equal to the frequency of the highest Q pole in the noise shape
 - A key job of the antialiasing filters used in front of ΣΔ modulators is to reduce out-of-band signals to safe levels
Modulator Stability

• 5000 point simulations such as those in the previous slides don’t guarantee stability
 – Sometimes millions of time points are required before an unstable modulator blows up
 – When it explodes, G falls very quickly

• Square wave tolerance is a fast, effective basis for comparing the relative stability of different modulator topologies

Voltage Scaling

• Given that the modulator is stable for 1Vrms inputs, let’s move on to look at the state variable voltages under various input conditions
 – Loop state variables and the filter output are labeled green on the next slide

• Peak signal levels and signal standard deviations are easy to obtain in MATLAB
 – We’ll examine voltages for a 5kHz sinusoidal input...
5th-Order Loop Filter

IN (from summer)

\[k_1 (1 - z^{-1}) \]

\[b_1 \]

\[k_2 z^{-1} (1 - z^{-1}) \]

\[1 - z^{-1} \]

\[a_1 \]

\[k_3 z^{-1} (1 - z^{-1}) \]

\[1 - z^{-1} \]

\[a_2 \]

\[k_4 z^{-1} (1 - z^{-1}) \]

\[1 - z^{-1} \]

\[a_3 \]

\[k_5 z^{-1} (1 - z^{-1}) \]

\[1 - z^{-1} \]

\[a_4 \]

\[a_5 \]

\[Q \]

OUT (to comparator)

5kHz Input Loop Voltages

<table>
<thead>
<tr>
<th>Input Amplitude [dBV]</th>
<th>Positive Peaks</th>
<th>Negative Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EECS 247 Lecture 20: 5th Order Architecture © 2002 B. Boser
Only the sign of Q matters, so we can make k_1 whatever we want without changing the 1-Bit data at all.

5kHz Input Loop Voltages

- If we scale k_1 by 0.1,
 - All state variables and Q scale by 0.1
 - But since the comparator output is fixed, G increases 10X

- The change in k_1 doesn’t change the shape of the root locus, either
 - The effective gain for each root position is increased 10X
 - $G > 4$ is now required for stability
5kHz, $k_1=0.1$ Effective Gain

![Graph showing effective gain vs. sinewave input amplitude (dBV).]

$k_1=0.1$ Loop Voltages

![Graph showing loop peak voltages (V) vs. input amplitude (dBV).]
Loop Voltage Scaling

• Before we scale k_1 down any lower, we note that \int_3, \int_4, and \int_5 have substantially larger swings than \int_1 and \int_2

• Just about any filter topology allows scaling tricks which change internal state variable amplitudes without changing the filter output
 - The next slide shows an example
Input Range Scaling

- Slides 40 and 44 indicate inadequate stability margins for 1Vrms sinewave inputs

- Scaling the DAC output levels adjusts the modulator input range
 - If V_{in} and the DAC outputs are scaled up by the same factor g, the 1-Bit data is completely unchanged
 - Of course, increasing the range also increases the quantization noise ... the dynamic range and peak SQNR stay the same!
 - If the DAC output levels are increased and the analog full scale is held constant, the stability margin improves ... at the expense of reduced SQNR

Increasing the DAC levels by g reduces the analog to digital conversion gain:

$$\frac{D_{OUT}(z)}{V_{IN}(z)} = \frac{H}{1+gH} \approx \frac{1}{g}$$

Increasing V_{IN} g by the same factor leaves 1-Bit data unchanged
Stage 1 Modulator

• We’ll increase g from 2.5 to 3.0 to provide a 2dB increase in stability margin for a 1Vrms full scale input

• We’ll also implement the loop voltage scaling changes suggested in slide 45

• The result is our first-pass stage 1 modulator, and its performance appears on the following slides …
Loop Voltages

VLSI-compatible voltages!

Input Amplitude [dBV]

Loop Peak Voltages [V]

1 2 3 4 5

-2 -4 -30 -25 -20 -15 -10 -5 0 +5

C

loop voltages

VLGH-compatible voltages!