Exam is open-book, open-notes. Clearly mark results with box around. No credit for ambiguous solutions. Show derivations. Return this cover page. Good luck!

Name: __________________________

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>****</td>
</tr>
</tbody>
</table>
1. [40] Derive the Z-domain voltage transfer function $H(z)$ of the following switched-capacitor filter for both phases ϕ_1 and ϕ_2. You may assume the op amp is ideal with infinite gain and bandwidth. Vin updates in ϕ_2 and holds in ϕ_1. $Vout$ changes during both ϕ_1 and ϕ_2.

 a) Derive $H_1(z) = \frac{Vout}{Vin}$ during phase ϕ_1. [20]

 b) Derive $H_2(z) = \frac{Vout}{Vin}$ during phase ϕ_2. [20]
2. [20] In flash A/D converters, multi-stage preamp topology is usually adopted to reduce the comparator offset. In the following diagram, a three-stage cascaded inverter chain is used as the preamp. Assume $A1 = A2 = A3 = -4$ and each inverter has an input referred offset voltage V_{osi}. The comparator (latch) has an offset of V_{os4}. The inverters are auto-zeroed (input and output shorted before comparison is performed) to reduce the offsets of themselves. You may assume all switches are ideal.

![Diagram of preamp and comparator](image_url)

a) Explain the functionality of capacitors $C1$ through $C3$. [5]

b) Derive an expression for the total input-referred offset voltage due to all preamps and the latch. [10]

c) If all offset voltages are roughly the same, which stage, in your opinion, contributes the most of the overall input-referred offset? Could you suggest a simple auto-zeroing circuit that further reduces this dominant offset error? [5]
3. [40] The following circuit diagram shows a fast residue amplifier designed for digitally corrected 1-b/stage pipelined A/D converters. A single transistor amplifier exhibits very high speed, but suffers from finite DC gain effect and nonlinearity. Assume capacitors are perfectly matched \((C1 = C2 = C)\). Input voltage is sampled in phase \(\phi_1\) (note that the sampling operation also performs auto-zeroing) and amplified in phase \(\phi_2\). In \(\phi_2\), \(C2\) is connected to either 0 or \(V_{ref}\) depends on the \(Vin\) value. If \(Vin\) is below \(V_{ref}/2\) (comparator decision \(D = 0\)), then \(C2\) is connected to 0; if it is above \(V_{ref}/2\) (comparator decision \(D = 1\)), then \(V_{ref}\). Ignore all parasitics. Assuming the digital correction algorithm is not applied, answer the following questions:

![Circuit Diagram]

a) If the open-loop gain of the amplifier formed by \(M1\) and \(R\) is \(-A\), derive a closed-form expression for the output residue voltage \(V_{out}\) in terms of \(Vin\), \(V_{ref}\), and comparator decision \(D\) (you may assume \(V_{gs}\) of \(M1\) is 1V when \(\phi_1\) is closed). [20]

Hint: Note the quiescent biasing point of the amplifier is that when \(\phi_1\) is closed. The open-loop gain is defined in terms of the signal swing where quiescent biasing is removed.

b) Suppose we use this residue amplifier in the 1st stage of a 10-bit pipelined A/D converter. If \(A = 40\) is constant, how many missing codes are there around \(V_{ref}/2\) (assuming the following 9-bit converter is ideal and is designed to resolve out of range signals)? [20]