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2nd Order Transfer Functions

• Imaginary axis zeroes

• Tow-Thomas Biquad

• Example
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Imaginary Axis Zeros

• Sharpen transition band
• “notch out” interference
• High-pass  filter (HPF)
• Band-reject filter
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Note: Always represent transfer functions as a product of a gain 
term, poles, and zeros (pairs if complex). Then all 
coefficients have a physical meaning, reasonable 
magnitude, and easily checkable unit.
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Imaginary Axis Zeros
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Imaginary Zeros
• Zeros substantially sharpen 

transition band

• At the expense of reduced stop-
band attenuation at high frequencyPZ
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Moving the Zeros
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Tow-Thomas Biquad

Ref: P. E. Fleischer and J. Tow, “Design Formulas for biquad active filters using 
three operational amplifiers,” Proc. IEEE, vol. 61, pp. 662-3, May 1973.

• Parasitic insensitive
• Multiple outputs
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Frequency Response
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• Vo2 implements a general biquad section with arbitrary poles and zeros
• Vo1 and Vo3 realize the same poles but are limited to at most one finite zero
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Component Values
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Filter Design Example

• Application: testing of ultra-linear ADC
• Problem: sinusoidal source has higher distortion than 

the ADC!
• Solution

– Filter source with bandpass before converting
– Check resulting source with spectral analyzer

Twist: the analyzer is not sufficiently linear either
à notch out sinusoid and look just at harmonics

• Implementation
– Bandpass & Notch at 1kHz
– Use Vo2 for bandpass (only possibility), 

Vo1 for notch

EECS 247 Lecture 3:  Second Order Transfer Functions © 2002 B. Boser   10A/D
DSP

Filter Design Example

1kHz
Generator

1kHz
BPF

1kHz
Notch

spectrum
analyzer

ADC under
test

Principle: IC test circuits are useless if you can’t
verify their performance!

Our filter
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Filter Coefficients
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Final Filter
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Choose:
C1=C2=112nF (large to minimize noise)
R8=1kΩ
fP=1kHz,  QP=30  (check sensitivity!)

Solve equations …
R1=42.631kΩ
R2=1.4921kΩ
R3=1.3534kΩ
R4=42.631kΩ
R5=1.4921kΩ
R6=R7=R8

Let’s order the parts …
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Capacitors

• C0G capacitors
– Vishay Vitramon, C0G Dielectric Capacitor datasheet, 2000.

http://www.vishay.com/document/45002/45002.pdf
– Negligible voltage coefficient (for linearity)
– Excellent tempco (30ppm/°C)
– 2% initial accuracy is easy to get

• No high-value capacitors are trimmable
• Resistors will be trimmed to compensate for capacitor 

variations
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Resistors
• Trimmed resistors combine fixed metal film resistors and 

precision trim potentiometers in series
– 1%-accurate, 5ppm/°C, lab grade metal film resistors provide ∼90% 

of the nominal resistance 

Ref: Caddock Electronics, Type TN Lab Grade Low TC Precision Film Resistor 
datasheet, 1999.

– 50ppm/°C trim pots provide between 0% and ∼20% of the nominal 
resistance

Ref: Vishay Foil Resistors, Model 1268 Precision Trimming Potentiometers datasheet

– Use two fixed resistors in series with the trimpot to minimize trimpot 
value and optimize overall tempco 

• R6-R8 are 0.1%-accurate, 5ppm/°C metal film 
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Opamps

• For opamps, we’ll use the Burr-Brown OPA627

– Ref: Texas Instruments / Burr-Brown, OPA627 and OPA604 
datasheets, 1989.

– The finest audio opamp in the world, and, at $15/each, 
priced accordingly!

– But money is no object when designing IC test fixtures (only 
a few are ever built)

– Adequate speed for this application
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Bandpass/Bandstop Responses
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Filter Design Example (cont.)

• Note that the bandpass output H1 provides 
>30dB attenuation to all harmonics present in 
the 1kHz generator output

• Opamp outputs have 0.0±0.5dB peak gain
– This maximizes each opamp’s output swing for 

best dynamic range

• Let’s magnify the frequency axis for the two 
responses of interest…
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Bandpass/Bandstop Responses
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Filter Design Example

• Temperature changes won’t change these 
responses too much
– Lab temperatures are stable to 25±3°C
– Our lab-grade RC products move <100ppm/°C

• Initial component values are another story
– What if C1=114nF and C2=113nF?
– That’s within their ±2% accuracy specifications
– What’s            ? P

CSω
1
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Bandpass/Bandstop Responses
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Filter Design Example

• Obviously, we’ve got to tune the filter 
back to its original specification

• How is that tuning done?
– Do you tell your technician to twiddle pots 

randomly until it works?
– Or do you document a robust tuning 

procedure?
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RC Filter Tuning Strategy

• Famous biquads like the Tow-Thomas come 
complete with their own tuning strategies
– The circuit topologies allow 1 trim operation to adjust 1 

design parameter (such as fP, fZ, QP, QZ, gain) without 
changing the others

• Rationale for a biquad’s tuning strategy becomes 
apparent when studying design equations such as 
the Tow-Thomas equations on slide 6
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Tow-Thomas Tuning Strategy

• R3 will be set to a fixed value to keep the 
unused OPAMP3 output below 0dB

• Tuning involves the following steps performed 
in the specified sequence:
– Adjust R2 to center the bandpass at 1kHz
– Adjust R5 to center the notch at 1kHz
– Adjust R1 to set the bandpass Q to 30
– Adjust R4 to deepen the notch
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Tow-Thomas Tuning Strategy

• The design equations also provide the range of 
adjustment required for a given resistor
– Remember that an excessively large adjustment range 

translates into excessively large tempco

• R1 tuning range (from slide 7):

a1≡
1

R1C1
⇒

1

a1C1MAX

1

a1C1MIN

< R1 <

known set by capacitor tolerances
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Tow-Thomas Tuning Strategy

• An even simpler way to determine 
resistor ranges is to:
– Set all capacitors to their high tolerance 

limit (nominal+2% in this case)
– Calculate R’s for these capacitances 

(these will be the minimum resistance 
values)

– Set capacitors to their low tolerance limit
– Calculate maximum R’s
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Tow-Thomas Biquad

C2(0.112µ)

vIN

R7(1K)

R1(40K+5K)

R5(1.4K+200)R6 (1K)

R8 (1K)

R3 (1.35K)

R4(40K+5K)

OPAMP1 OPAMP2 OPAMP3

C1(0.112µ)

R2

(1.4K+200)

resistors: metal film + trimpot
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Tow-Thomas Tuning Strategy

• If you’ve left your filter unattended for a while, 
assume that its trim potentiometers are 
completely misadjusted

• Adjust all trimpots to 0Ω and start over
– Let’s return to our C1=114nF, C2=113nF example
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Bandpass/Bandstop Responses
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Bandpass/Bandstop Responses
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Tow-Thomas Tuning Strategy

• For most R’s and C’s in this biquad
• Hence,

• This means a +2% change in R2 will cause a –
1% change in fP

• Note that fZ sensitivities are also –1/2
– A 4% increase in R5 will shift our notch (currently at 

1.02kHz) back to the right place  

x
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Bandpass/Bandstop Responses
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Summary

• General 2nd order transfer function
– Imaginary axis zeros

• General purpose biquad
– Large selection in literature
– Tow-Thomas biquad:

• 3 opamps
• Parasitic insensitive
• Multiple outputs
• Tuning strategy


