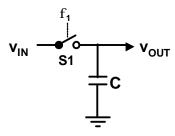
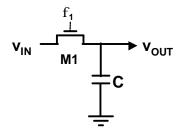
Sampling

Ideal Sampling



 Grab exact value of V_{in} when switch opens

Practical Sampling



- kT/C noise
- Finite $R_{sw} \rightarrow limited bandwidth$ $R_{sw} = f(V_{in}) \rightarrow distortion$
- Switch charge injection (EE240)
- · Clock jitter

EECS 247 Lecture 15: Sampling

© 2002 B. Boser 1

kT/C Noise

$$\frac{k_B T}{C} \le \frac{\Delta^2}{12}$$

$$C \ge 12k_B T \left(\frac{2^B - 1}{V_{FS}}\right)^2$$

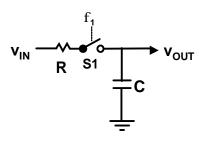
In high resolution ADCs kT/C noise usually dominates overall error (power dissipation argument).

В	C _{min} (V _{FS} = 1V)
_	
8	0.003 pF
12	0.8 pF
14	13 pF
16	206 pF
20	52 800 pF

Acquisition Bandwidth

- The resistance R of switch S1 turns the sampling network into a lowpass filter with risetime = RC = τ
- Assuming V_{in} is constant during the sampling period and C is initially discharged (a good idea—why?):

$$v_{out}(t) = v_{in} \left(1 - e^{-t/t} \right)$$



A/D DSP EECS 247 Lecture 15: Sampling

© 2002 B. Boser 3

Switch On-Resistance

$$v_{in} - v_{out} \left(t = \frac{1}{2f_s} \right) << \Delta$$

$$v_{in} e^{-\frac{1}{2}f_s t} << \Delta$$
Worst Case: $v_{in} = V_{FS}$

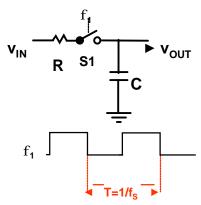
$$t << -\frac{T}{2} \frac{1}{\ln(2^B - 1)}$$

$$R << -\frac{1}{2f_s C} \frac{1}{\ln(2^B - 1)}$$

Example:

$$B=14, \quad C=13 pF, \quad f_s=100 MHz$$

$$T/\tau >> 19.4, \quad R << 40 \Omega$$



A/D DSP

EECS 247 Lecture 15: Sampling

Switch On-Resistance

$$\begin{split} I_{D(triode)} &= \mathbf{m} C_{ox} \frac{W}{L} \bigg(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \bigg) V_{DS} \\ &\frac{1}{R_{ON}} \cong \frac{dI_{D(triode)}}{dV_{DS}} \bigg|_{V_{DS} \to 0} \\ &= \frac{1}{\mathbf{m} C_{ox} \frac{W}{L} \big(V_{GS} - V_{TH} \big)} \\ &= \frac{1}{\mathbf{m} C_{ox} \frac{W}{L} \big(V_{DD} - V_{TH} - v_{in} \big)} \\ &= \frac{1}{R_o} \frac{1}{1 - \frac{v_{in}}{V_{DD} - V_{TH}}} \quad \text{ with } \quad R_o = \frac{1}{\mathbf{m} C_{ox} \frac{W}{L} \big(V_{DD} - V_{TH} \big)} \\ R_{ON} &= R_o \Big(1 - \frac{v_{in}}{V_{DD} - V_{TH}} \Big) \end{split}$$

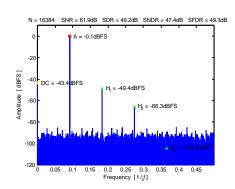
A/D DSP

EECS 247 Lecture 15: Sampling

© 2002 B. Boser 5

Sampling Distortion

$$v_{out} = v_{in} \left(1 - e^{-\frac{T}{2t} \frac{1}{1 - \frac{V_{in}}{V_{DD} - V_{TH}}}} \right)$$



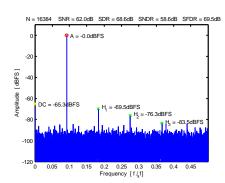
$$\begin{split} T/\tau &= 10 \\ V_{DD} - V_{TH} &= 2V \qquad V_{FS} = 1V \end{split}$$

A/D DSP

EECS 247 Lecture 15: Sampling

Sampling Distortion

- SFDR is very sensitive to sampling distortion
- · Solutions:
 - Overdesign switches
 - → increased switch charge injection
 - Complementary switch
 - Maximize V_{DD}/V_{FS}
 - → increased noise
 - Constant V_{GS} ? f(V_{in})



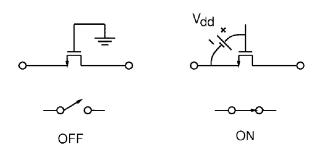
$$T/\tau = 20$$

 $V_{DD} - V_{TH} = 2V$ $V_{FS} = 1V$

EECS 247 Lecture 15: Sampling

© 2002 B. Boser 7

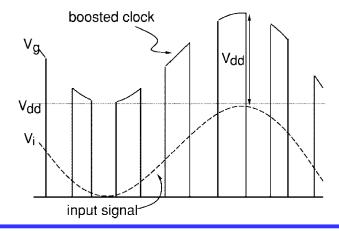
Constant V_{GS} Sampling



- Switch overdrive voltage is independent of signal
- Error from finite R_{ON} is linear (to first order)

A/D DSP

EECS 247 Lecture 15: Sampling

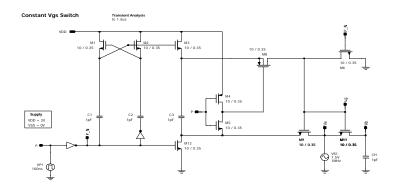


A/D DSP

EECS 247 Lecture 15: Sampling

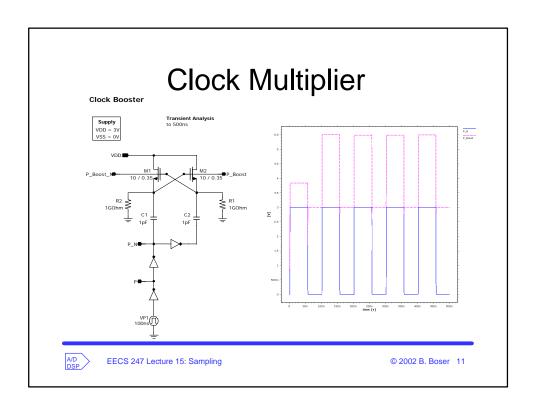
© 2002 B. Boser 9

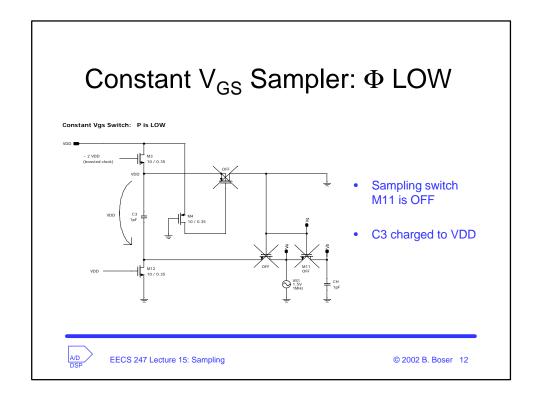
Constant V_{GS} Sampling Circuit



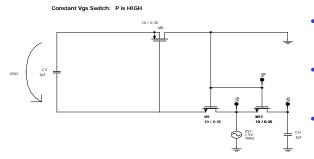
A/D DSP

EECS 247 Lecture 15: Sampling





Constant V_{GS} Sampler: Φ HIGH



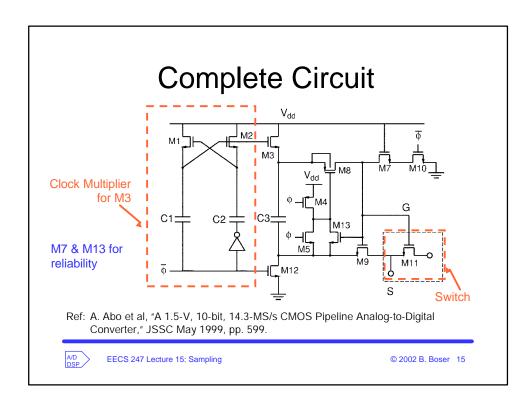
- C3 previously charged to VDD
- M8 & M9 are on:C3 across G-S of M11
- M11 on with constant VGS = VDD

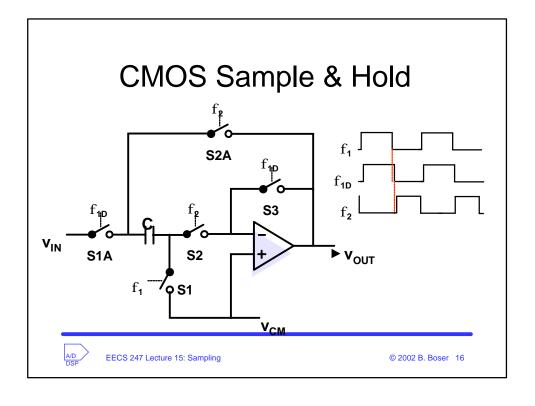
A/D DSP

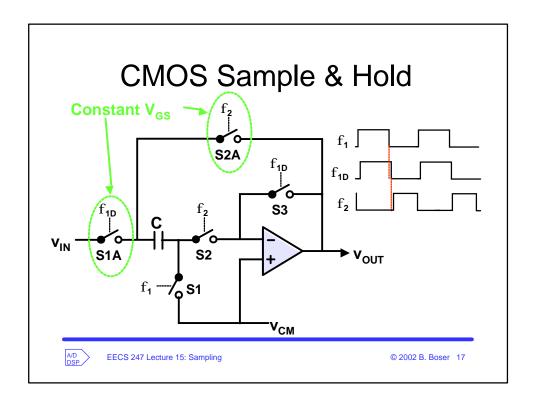
EECS 247 Lecture 15: Sampling

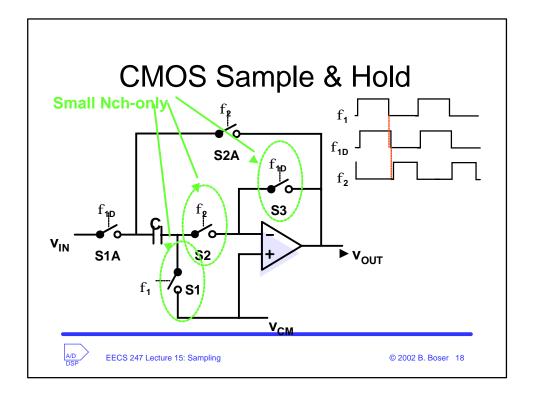
© 2002 B. Boser 13

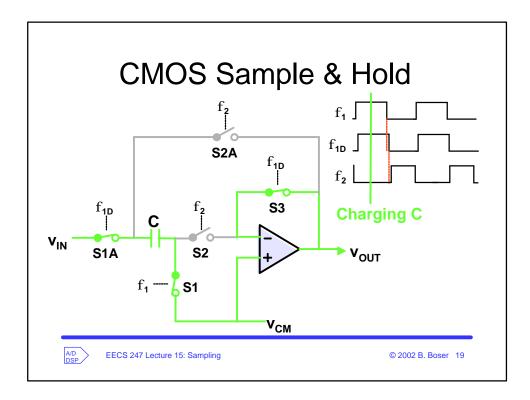
Constant V_{GS} Sampling Second of the secon











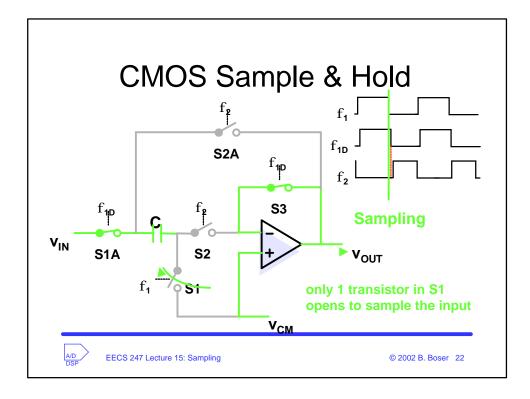
CMOS Sample & Hold

- S1 is an n-channel MOSFET
- S1 provides as much of the sampling path resistance as possible (R=R_{S1A}+R_{S1})
 - S1A is a wide (much lower resistance than S1) constant V_{GS} switch
 - If S1A's resistance is negligible, aperture delay depends only on S1 resistance
 - S1 resistance is independent of v_{IN} ; hence, aperture delay is independent of v_{IN}

Charge Injection

- At the instant of sampling, some of the charge stored in sampling switch S1 is dumped onto C
 - This unwanted charge is called "charge injection"
- The circuit on slide 15.2 has charge injection that varies in a wildly nonlinear fashion with v_{IN}
- With the CMOS Sampling Circuit, charge injection comes only from S1 and is first-order independent of v_{IN}
 - Only a dc offset is added to the input signal
 - This dc offset can be removed with a differential architecture

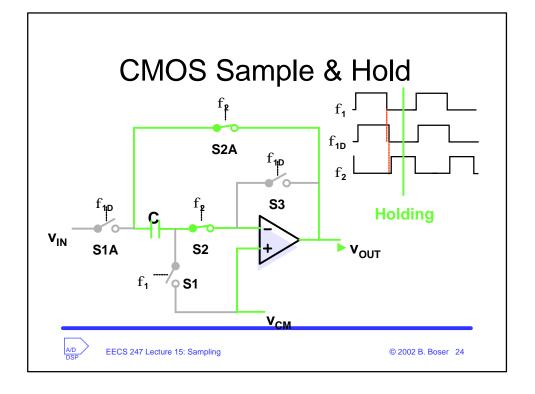
A/D DSP EECS 247 Lecture 15: Sampling



CMOS Sample & Hold

- During ϕ_2 , the opamp buffers the sampling capacitor for loads that need it
- The hold topology is shown on the following slide...

A/D DSP EECS 247 Lecture 15: Sampling



Jitter

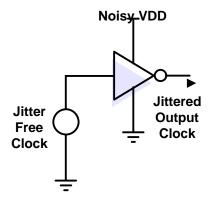
- All of the preceding analyses assume that sampling impulses are spaced evenly in time
- In the real world, separation of sampling impulses has some distribution around the nominal value T
- The variability in T is called jitter

A/D DSP EECS 247 Lecture 15: Sampling

© 2002 B. Boser 25

Jitter

- The dominant cause of clock jitter in most chips is power supply noise produced by unrelated activity in other parts of the chip
- The inverter symbol represents a chain of gates in the sampling clock path

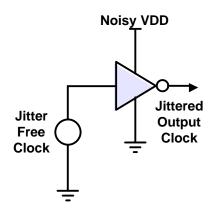


A/D

EECS 247 Lecture 15: Sampling

Jitter

- Let's assume the inverter delay is 100psec, and that the delay varies by 20% per volt change in VDD (20psec/V)
- 200mV of power supply noise becomes 4psec of clock jitter

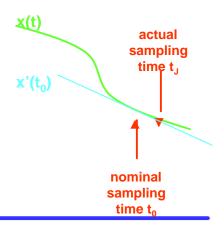


EECS 247 Lecture 15: Sampling

© 2002 B. Boser 27

Jitter

- Sampling jitter adds an error voltage proportional to the product of (t_J-t₀) and the derivative of the input signal at the sampling instant
- Jitter doesn't matter when sampling dc signals

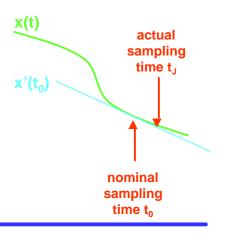


EECS 247 Lecture 15: Sampling

Jitter

• The error voltage is

$$e = x'(t_0)(t_J - t_0)$$



A/D DSP

EECS 247 Lecture 15: Sampling

© 2002 B. Boser 29

Jitter Example

Sinusoidal input

Amplitude: A

Frequency: f_x Jitter: 2t

$$x(t) = A\sin(2\mathbf{p}f_x t)$$

$$x'(t) = 2\mathbf{p}fA\cos(2\mathbf{p}f_x t)$$

$$|x'(t)| \le 2\mathbf{p}fA$$

$$|e(t)| \le |x'(t)| ?t$$

Worst case

$$A = A_{FS}$$

$$f_x = \frac{f_s}{2}$$

$$|e(t)| \ll \frac{\Delta}{2} \cong \frac{A_{FS}}{2^{B+1}}$$

$$?t << \frac{1}{2^B \mathbf{p} f_a}$$

R	f	Δt << than
	's	Δι << triair
16	10 MHz	0.5 ps
12	100 MHz	0.8 ps
8	1000 MHz	1.2 ps

The Jitter Law

- The worst case looks pretty stringent ... what about the "average"?
- Let's calculate the mean squared jitter error (variance)
- If we're sampling a sinusoidal signal

$$x(t) = A\sin(2\pi f_x t),$$

then

 $- x'(t) = 2\pi f_x A\cos(2\pi f_x t)$

$$- E{[x'(t)]^2} = 2\pi^2 f_x^2 A^2$$

- If jitter is uniformly distributed from $-\tau/2$ to $+\tau/2$
 - $E\{(t_1-t_0)^2\} = \tau^2/12$

EECS 247 Lecture 15: Sampling

© 2002 B. Boser 31

The Jitter Law

- If x'(t) and the jitter are independent
 - $E\{[x'(t)(t_J-t_0)]^2\} = E\{[x'(t)]^2\} E\{(t_J-t_0)^2\}$
- Hence, the jitter error power is

$$E\{e^2\} = p^2 f_x^2 A^2 t^2 / 6$$

 If the jitter is uncorrelated from sample to sample, this "jitter noise" is white

A/D DSP

EECS 247 Lecture 15: Sampling

The Jitter Law

$$DR_{\text{jitter}} = \frac{A^{2}/2}{\mathbf{p}^{2} f_{x}^{2} A^{2} \mathbf{t}^{2}/6}$$
$$= \frac{3}{\mathbf{p}^{2} f_{x}^{2} \mathbf{t}^{2}}$$
$$= -20 \log_{10}(f_{x} \mathbf{t}) - 5.172 \text{dB}$$

f _x	τ	DR _{jitter}	ENOB
1 MHz	1 ns	55 dB	8.8
1 MHz	2 ps	109 dB	17.8
100 MHz	0.4 ps	83 dB	13.5
1000 MHz	0.5 ps	61 dB	9.8

A/D DSP EECS 247 Lecture 15: Sampling

© 2002 B. Boser 33

The Jitter Law

- The Jitter Law must be respected whenever you require highresolution conversion of high frequency signals
 - Sampling a 1MHz signal with 1nsec of peak-to-peak jitter yields a dynamic range of only 55dB
- In practice, jitter is usually controlled to add negligible to the total converter error (i.e. thermal and quantization noise)
- This translates into the jitter being ~10dB below other noise sources
 - For 16 Bit conversion of 1MHz signals, a –109dB jitter DR limit requires < 2 psec peak-to-peak jitter

A/D DSP

EECS 247 Lecture 15: Sampling

The Jitter Law

- Clock jitter in the single-digit picosecond range doesn't just happen
 - Separate supplies
 - Separate analog and digital clocks
 - Short inverter chains between clock and sampling switch
- Few, if any, other analog-to-digital conversion nonidealities have the same symptoms as sampling jitter:
 - RMS noise proportional to input frequency
 - RMS noise proportional to input amplitude
- So, if sampling clock jitter is limiting your dynamic range, it's easy to tell, but difficult to fix
 - Very difficult to fix in silicon without all-layer mask revisions

A/D DSP EECS 247 Lecture 15: Sampling