Oversampled ADCs

* One-bit quantization
— Quantization noise shaping

» A first-order, 1-Bit sigma-delta modulator
— The name ... sigma-delta, delta-sigma, SD, DS, ...
— Time domain model
— Small-signal model
— Oversampling
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Oversampling

* Nyquist rate ADCs
— Sample at f, around 2x bandwidth
— Resolution set by number of decision levels of quantizer

» Oversampled ADCs
— Sample at f, >> bandwidth (16 ... 500x)
— Use few quantization levels (typical 1-Bit)
— Employ DSP to reduce quantization error

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 2

DSP




One-Bit Quantization

» Let's examine some properties of one bit random
sequences
— Values in the sequence are constrained to be either +1 or -1

* By picking +1's and -1's at random (using MATLAB'’s
rand.m random number generator), we generate a
sequence with zero mean

— The sequence values model outputs of a hypothetical 1-Bit,
1MHz ADC

— Nothing stops us from doing a DFT of this sequence ...
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Zero Mean 1-Bit DFT
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One-Bit DFTs

» For 1-Bit DFT plots, we’ll use a different normalization
scheme

— The dBWN (dB White Noise) scale sets the 0dB line at the
noise/bin of a random +1, -1 sequence

— From the energy theorem,

N-1 5 1 N-1 5
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Zero Mean 1-Bit DFT
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Non-zero Mean Sequences

» Of course, 1-Bit sequences can represent dc
inputs from -1 to +1

* For example, an average value of +1/11 can
be generated by a sequence with
— 5/11 probability of -1
— 6/11 probability of +1

* Let's look at DFTs of a non-zero mean
sequence ...
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+1/11 Mean 1 Bit DFT
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+1/11 Mean 1-Bit DFT

average of 30 spectra
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+1/11 Minimum Error Sequence

* No random number generator is required to produce
the 1-Bit sequence which represents +1/11 with the
minimum mean-squared quantization error

* This 11 term sequence averages to 1/11:
[(1 +1 -1 +1 -1 +1 -1 +1 -1 +1 +1]
— The sequence in []'s repeats
— Its DFT follows ...
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+1/11 Minimum Error DFT
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+1/11 Minimum Error Sequence

* Minimum error is periodic error with a period of f,/11

— Note that the fundamental term in this Fourier series is the
smallest (a bit unusual)

* A guantization noise model is completely
inappropriate for this type of sequence

» Let’s deliberately increase the quantization error a
little and attack its periodicity ...
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3 Pattern Options

» Generate another 1-Bit sequence by concatenation of
the following sequences:
- [-1 +1 -1 +1 -1 +1 -1 +1 +1]
- [-1 +1 -1 +1 -1 +1 -1 +1 -1 +1 +1]
- [-1 41 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 +1]

» Selection of the above 9, 11, and 13 term sequences
at random vyields an average of +1/11 and the
following DFT ...

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 13

3 Pattern Options DFT
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3 Pattern Options

» The randomized concatenation of longer patterns
certainly breaks up periodic error

— Some concentration of energy near f/11 and its harmonics
(especially 5f,/11) is still visible

* Noise below 50kHz is significantly lower than that of
the sample-by-sample random sequences of slide 9

— The “noise shaping” obtained with 3 pattern options benefits
low frequencies at the expense of increased quantization
error at high frequencies
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3 Pattern Options DFT
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5 Pattern Options

* Let's add two more patterns to our set of pattern options:
- [[1+41-1+1-1+1-1+1-1+1-1+1-1+1+1]
— [141-1+1-1+1+1]

» Selection of 7, 9, 11, 13, and 15 term sequences at
random preserves the +1/11 average
— Think of this process as a sort of time-variant dither
— DFT follows ...
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3/5 Pattern Options
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5 Pattern Noise Shaping

* Noise vs. frequency still follows the general upward
tilt of the periodic error harmonics
— 5 pattern options further reduce the f/11 bump
— The 5f/11 component remains large

* The model that quantization error is uncorrelated with
the input signal becomes reasonable with only 5
pattern options

— Such reasonableness is required for small-signal analysis of
the sigma-delta modulator ...
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Sigma- Delta Modulators

Analog 1-Bit SD modulators convert a continuous time
analog input v into a 1-Bit sequence dg
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Sigma-Delta Modulators

The loop filter H can be either a SC or continuous time

» SC's are “easier” to implement and scale with the clock rate
» Continuous time filters provide anti-aliasing protection

» Can be realized with passive LC's at very high frequencies
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EECS 247 Lecture 19: Oversampling © 2002 B. Boser 21

S

Vin —™»

o

1st Order SD Modulator

In a 15t order modulator, the loop filter is an integrator
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1st Order DS Modulator

+
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DAC

¢ Properties of the first-order modulator:
— Analog input range is the d,, times the DAC reference
— The average value of doyr must equal the average value of vy
— +1's (or -1's) density in doy7 is an inherently monotonic function of vy
- linearity is not dependent on component matching
— Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error
but loose this inherent monotonicity
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Simulation
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1t Order SD, +1/11 dc Input

* Let’s continue our +1/11 dc input example with the
modulator sampling frequency of 1MHz

* A 1024 sample DFT plot appears on the following
slide...
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1t Order SD, +1/11 dc Input
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1t Order SD, +1/11 dc Input

» A check of the time samples confirms the
obvious: the 1storder DS modulator produces
the minimum error 11 term sequence:

[1 +1 -1 +1 -1 +1 -1 +1 -1 +1 +1]

» Of course, with this modulator model we can
look at much more interesting inputs than
dc...

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 27

1t Order SD, Sinewave Input
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1t Order SD, Sinewave Input

* The modulator output for the undistorted sinewave
input produces huge distortion, suggesting the need
for dither

* We’'ll add a dither signal q at the comparator input:

]
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Dithered 1st Order SD
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Dithered 1st Order SD

* 1Vrms Gaussian dither is difficult if not impossible to
produce on mixed-signal ICs

— On-chip digital circuitry adds excessive non-Gaussian
interference to analog noise generators

» First-order modulators are too prone to limit cycles to
be of much practical use
— They do provide the basis for higher-order SD's
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15t Order Noise Shaping

If g(k) and v, (k) are uncorrelated, we can compute the signal and noise
transfer functions independently:

STF(2)= E\);L((ZZ)) NTF(z) = VQ(S)

in

How do we model the quantizer?

9
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1t Order Noise Shaping

* Nonlinear elements like comparators are frequently
modeled by some sort of linearized “effective gain”, G

* One measure of effective gain that’s proven itself
useful for SD analysis is:

Go rms value of the comparator output

rms value of the comparator input

» The value of G depends on the input signal and can
be determined with simulation
— E.g. for the simulation in slide 30, G=0.7 (-3.1dB)
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15t Order Noise Shaping

» The input g models both dither, if added, and the
input-referred noise of the comparator

:
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15t Order Noise Shaping

ﬁt]%wﬁ

H(z)

STF = Do -_CH(2) NTF=2-_ S
V, 1+GH(2) V,, 1+GH(2)

n n

When H(z) is large, this is approximately 1.
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15t Order Noise Shaping

1
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v

in

For large H(z), this is »0.
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Noise Transfer Function, NTF
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“Integrated” Noise

» Just as we did for thermal noise, let's look at
the integrated noise at the output of the
modulator

* In the discrete time case, noise integrals are
summations, but the result is called
“integrated noise” nonetheless

EECS 247 Lecture 19: Oversampling © 2002 B. Boser 38

DSP




Noise Summations

* Integrated noise is computed from the
energy theorem (N even):

s =AY N, M=0

rms

1 > M 2

Ams = = [VAMt S2VA Y2 0<M<N/2
N m=1
1 > N/2-1

ane= o VA VALYt S2VAY  M=N2
N m=1

EECS 247 Lecture 19: Oversampling ©2002 B. Boser 39

Integrated Noise
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Integrated Output
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Oversampling and Noise Shaping

» SD modulators have interesting characteristics
— Unity gain for the the input signal V
— Large attenuation of quantization noise injected at q

— Much better than 1-Bit noise performance is possible if we're
only interested in frequencies << f,

» ADCs which sample their inputs at much higher
frequencies than the Nyquist rate minimum are called
“oversampling ADCs”
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Oversampling and Noise Shaping

» Higher order loop filters consisting of several integrators
provide much better noise shaping than 15t order realizations

* They are also less prone to limit cycles or need less dither

» If a 1-Bit DAC is used, the converter is inherently linear—
independent of component matching
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Estimating Quantization Noise

1D
AT
NTF (z) = S e
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Example: 15t Order Modulator

-1

_Z
H (Z) - 1- 71
— B
NTF ((z3 _1 1 S¢= O (1INTF (2],
=1- -B
b4
INTF (2) = NTF (2)NTF (2*) @ fg O 2sinprr o
= (l- Z_l)(l- Z) -'iv‘ s
=1-z'- z+1 »%%E
=2- 2coswT
=29npfT
EECS 247 Lecture 19: Oversampling © 2002 B. Boser 45

Example: Dynamic Range

DR = Peak signal power _S
pesk noisepower S,

_ 1wé M DR

S, =6+ sinusoidal input, STF =1 16 33dB
2¢2p 32 42dB

§:p72ig 1024 87 dB
3 M312

DR=%M3
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Dynamic Range

* DR increases 9dB for each doubling of M

» 15t order modulators require very high M for >10-Bit resolution
-> higher order filters improve this tradeoff substantially

* Analysis is based on assumption that the quantization noise is
“white”
- not true in practice, especially for low-order modulators
- practical modulators suffer from other noise sources also
(e.g. thermal noise)

* Next time we’ll design an oversampled audio ADC with better
than 16-Bit resolution
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