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Oversampled ADCs

• One-bit quantization
– Quantization noise shaping

• A first-order, 1-Bit sigma-delta modulator
– The name … sigma-delta, delta-sigma, Σ∆, ∆Σ, …
– Time domain model 
– Small-signal model
– Oversampling
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Oversampling
• Nyquist rate ADCs

– Sample at fs around 2x bandwidth
– Resolution set by number of decision levels of quantizer

• Oversampled ADCs
– Sample at fs >> bandwidth (16 … 500x)
– Use few quantization levels (typical 1-Bit)
– Employ DSP to reduce quantization error
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One-Bit Quantization
• Let’s examine some properties of one bit random 

sequences
– Values in the sequence are constrained to be either +1 or –1

• By picking +1’s and –1’s at random (using MATLAB’s 
rand.m random number generator), we generate a 
sequence with zero mean
– The sequence values model outputs of a hypothetical 1-Bit, 

1MHz ADC
– Nothing stops us from doing a DFT of this sequence …
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Zero Mean 1-Bit DFT
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One-Bit DFTs
• For 1-Bit DFT plots, we’ll use a different normalization 

scheme
– The dBWN (dB White Noise) scale sets the 0dB line at the 

noise/bin of a random +1, -1 sequence
– From the energy theorem,

Σ
n=0

N-1

an
2 Σ

m=0

N-1

Am
21

N
= N = ⇒ Am = √N

(+1)2 or (–1)2 = 1
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Zero Mean 1-Bit DFT 
average of 30 spectra
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Non-zero Mean Sequences

• Of course, 1-Bit sequences can represent dc 
inputs from –1 to +1

• For example, an average value of +1/11 can 
be generated by a sequence with
– 5/11 probability of  –1
– 6/11 probability of  +1

• Let’s look at DFTs of a non-zero mean 
sequence …
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+1/11 Mean 1 Bit DFT
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+1/11 Mean 1-Bit DFT
average of 30 spectra
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averaging makes the dc component clearly visible
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+1/11 Minimum Error Sequence
• No random number generator is required to produce 

the 1-Bit sequence which represents +1/11 with the 
minimum mean-squared quantization error

• This 11 term sequence averages to 1/11:
[–1  +1  –1  +1  –1  +1  –1  +1  –1  +1  +1]
– The sequence in []’s repeats
– Its DFT follows …
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+1/11 Minimum Error DFT
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+1/11 Minimum Error Sequence
• Minimum error is periodic error with a period of fs/11

– Note that the fundamental term in this Fourier series is the 
smallest (a bit unusual)

• A quantization noise model is completely 
inappropriate for this type of sequence

• Let’s deliberately increase the quantization error a 
little and attack its periodicity …
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3 Pattern Options
• Generate another 1-Bit sequence by concatenation of 

the following sequences:
– [–1  +1  –1  +1  –1  +1  –1  +1  +1]
– [–1  +1  –1  +1  –1  +1  –1  +1  –1  +1  +1]
– [–1  +1  –1  +1  –1  +1  –1  +1  –1  +1  –1  +1  +1]

• Selection of the above 9, 11, and 13 term sequences 
at random yields an average of +1/11 and the 
following DFT …
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3 Pattern Options DFT
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3 Pattern Options
• The randomized concatenation of longer patterns 

certainly breaks up periodic error
– Some concentration of energy near fs/11 and its harmonics 

(especially 5fs/11) is still visible

• Noise below 50kHz is significantly lower than that of 
the sample-by-sample random sequences of slide 9
– The “noise shaping” obtained with 3 pattern options benefits 

low frequencies at the expense of increased quantization 
error at high frequencies  
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3 Pattern Options DFT
average of 30 spectra
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5 Pattern Options
• Let’s add two more patterns to our set of pattern options:

– [–1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 +1]
– [–1 +1 –1 +1 –1 +1 +1]

• Selection of 7, 9, 11, 13, and 15 term sequences at 
random preserves the +1/11 average
– Think of this process as a sort of time-variant dither
– DFT follows …
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3/5 Pattern Options
average of 30 spectra
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5 Pattern Noise Shaping
• Noise vs. frequency still follows the general upward 

tilt of the periodic error harmonics
– 5 pattern options further reduce the fs/11 bump
– The 5fs/11 component remains large

• The model that quantization error is uncorrelated with 
the input signal becomes reasonable with only 5 
pattern options
– Such reasonableness is required for small-signal analysis of 

the sigma-delta modulator …
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Sigma- Delta Modulators
Analog 1-Bit Σ∆ modulators convert a continuous time 
analog input vIN into a 1-Bit sequence dOUT

H(z)
+

_
vIN dOUT

+1 or -1

Loop filter 1b Quantizer (a comparator)

fs
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Sigma-Delta Modulators
• The loop filter H can be either a SC or continuous time
• SC’s are “easier” to implement and scale with the clock rate
• Continuous time filters provide anti-aliasing protection
• Can be realized with passive LC’s at very high frequencies

H(z)
+

_
vIN dOUT

+1 or -1

fs
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1st Order Σ∆ Modulator
In a 1st order modulator, the loop filter is an integrator

+

_
vIN dOUT

+1 or -1
∫

H(z) =
z-1

1 – z-1
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1st Order ∆Σ Modulator

• Properties of the first-order modulator:
– Analog input range is the dout times the DAC reference
– The average value of dOUT must equal the average value of vIN
– +1’s (or –1’s) density in dOUT is an inherently monotonic function of vIN 
à linearity is not dependent on component matching

– Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error 
but loose this inherent monotonicity

+

_
vIN dOUT

+1 or -1
∫

-∆/2≤vIN≤+∆/2

DAC
-∆/2 or +∆/2
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Simulation
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1st Order Σ∆, +1/11 dc Input

• Let’s continue our +1/11 dc input example with the 
modulator sampling frequency of 1MHz

• A 1024 sample DFT plot appears on the following 
slide…

EECS 247 Lecture 19: Oversampling © 2002 B. Boser   26A/D
DSP

1st Order Σ∆, +1/11 dc Input
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1st Order Σ∆, +1/11 dc Input

• A check of the time samples confirms the 
obvious: the 1st order ∆Σ modulator produces 
the minimum error 11 term sequence:
[–1  +1  –1  +1  –1  +1  –1  +1  –1  +1  +1]

• Of course, with this modulator model we can 
look at much more interesting inputs than 
dc… 

EECS 247 Lecture 19: Oversampling © 2002 B. Boser   28A/D
DSP

1st Order Σ∆, Sinewave Input

vIN(k) = 0.99sin(2π 0.100001 t)
dOUT = [ +1 –1 +1 +1 +1 +1 –1 –1 –1 –1 … ] 
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1st Order Σ∆, Sinewave Input
• The modulator output for the undistorted sinewave 

input produces huge distortion, suggesting the need 
for dither

• We’ll add a dither signal q at the comparator input: 

+

_
vIN dOUT∫ +

q
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Dithered 1st Order Σ∆
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Dithered 1st Order Σ∆

• 1Vrms Gaussian dither is difficult if not impossible to 
produce on mixed-signal ICs
– On-chip digital circuitry adds excessive non-Gaussian 

interference to analog noise generators

• First-order modulators are too prone to limit cycles to 
be of much practical use
– They do provide the basis for higher-order Σ∆’s
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1st Order Noise Shaping
If q(k) and vIN(k) are uncorrelated, we can compute the signal and noise 
transfer functions independently:

How do we model the quantizer?

+

_
vIN dOUT∫ +

q

H(z) =
z-1

1 – z-1

( ) ( )
( ) ( ) ( )

( )inin

out

zV
zQ

zNTF
zV
zD

zSTF ==                      
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• Nonlinear elements like comparators are frequently 
modeled by some sort of linearized “effective gain”, G

• One measure of effective gain that’s proven itself 
useful for Σ∆ analysis is:

• The value of G depends on the input signal and can 
be determined with simulation
– E.g. for the simulation in slide 30, G=0.7 (-3.1dB)

1st Order Noise Shaping

G ≡
rms value of the comparator output

rms value of the comparator input
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1st Order Noise Shaping
• The input q models both dither, if added, and the 

input-referred noise of the comparator

+

_
vIN dOUT∫ +

q

H(z)

G
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1st Order Noise Shaping
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When H(z) is large, this is approximately 1.

EECS 247 Lecture 19: Oversampling © 2002 B. Boser   36A/D
DSP

1st Order Noise Shaping
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Noise Transfer Function, NTF
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“Integrated” Noise

• Just as we did for thermal noise, let’s look at 
the integrated noise at the output of the 
modulator

• In the discrete time case, noise integrals are 
summations, but the result is called 
“integrated noise” nonetheless  
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Noise Summations
• Integrated noise is computed from the 

energy theorem (N even):
arms = A0/ N , M=0

arms = Σ
m=1

M
2Am

21
N

A0 +
2

, 0<M<N/2

arms = Σ
m=1

N/2-1
2Am

21
N

A0 +
2

, M=N/2AN/2 +
2
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Integrated Noise
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The total “noise” at 
the modulator 
output with no input 
sums to 0dB
à This is consistent 
with a binary signal
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Integrated Output

The total power still 
sums to 0dB

Only little 
“quantization noise” 
at low frequency
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Oversampling and Noise Shaping

• Σ∆ modulators have interesting characteristics
– Unity gain for the the input signal VIN

– Large attenuation of quantization noise injected at q
– Much better than 1-Bit noise performance is possible if we’re 

only interested in frequencies << fs

• ADCs which sample their inputs at much higher 
frequencies than the Nyquist rate minimum are called 
“oversampling ADCs” 
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Oversampling and Noise Shaping

• Higher order loop filters consisting of several integrators 
provide much better noise shaping than 1st order realizations

• They are also less prone to limit cycles or need less dither

• If a 1-Bit DAC is used, the converter is inherently linear—
independent of component matching

• References
J. C. Candy and G. C. Temes, “Oversampling Methods for A/D and D/A Conversion”, Oversampling 
Delta-Sigma Data Converters: Theory, Design, and Simulation, 1992, pp. 1-25.

S. R. Norsworthy, R. Schreier, and G. C. Temes, “Delta-Sigma Data Converters, Theory, Design, and 
Simulation,” IEEE Press, 1997.
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Estimating Quantization Noise
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Example: 1st Order Modulator
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Example: Dynamic Range
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Dynamic Range
• DR increases 9dB for each doubling of M

• 1st order modulators require very high M for >10-Bit resolution
à higher order filters improve this tradeoff substantially

• Analysis is based on assumption that the quantization noise is 
“white”
à not true in practice, especially for low-order modulators
à practical modulators suffer from other noise sources also 

(e.g. thermal noise)

• Next time we’ll design an oversampled audio ADC with better 
than 16-Bit resolution


