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Introduction to Filters

• Filtering = frequency-selective signal processing
– It’s the most common type of signal processing
– Examples:

• Extract desired signal from many (radio)
• Separating signal and noise
• Amplifier bandwidth limitations

• Where to start
– Perfectionist: ideal (low-pass) filter
– Engineer: continuous time, first-order low-pass filter

EECS 247 Lecture 2:  Introduction to Filters © 2002 B. Boser   2A/D
DSP

First-Order RC Filter (LPF1)

Steady-state frequency response:
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Poles and Zeros

s-plane  (pzmap):
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Magnitude Response
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Frequency Response
Asymptotes:
- 20 dB/dec rolloff
- 90 degrees phase shift per 2 decades

Matlab code (L02_bode_lpf1.m):
wo = 2*pi*100e3;
s = tf('s');
h = 1 / (1+s/wo);
bodehz(h, logspace(1, 10, 100));

Note: bodehz is same as bode, but frequency axis 
is in Hz, rather than rad/s.
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Parasitics

Can we really get 100dB attenuation at 10GHz?
– Probably not
– Parasitics limit the performance of analog 

components
– E.g. 

• Shunt capacitance
• Feed-through capacitance
• Finite inductor, capacitor Q
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Frequency Response
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• Why not just make C larger?
• Beware of other parasitics not included in this model …
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Continuous Time Analog

• Analog passive components aren’t ideal
– Extra real poles/zeroes result from parasitics
– Parasitic effects begin to appear “50dB beyond” desired 

component characteristics
– Common sense helps you anticipate them

• Digital filters do not suffer from these effects
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Second-Order LPF
• Improved attenuation (compared to 1st order)
• Complex poles (rather than multiple real ones)

– Why?
– Visualize 3D s-plane plot!

• Biquadratic (2nd order) transfer function:

2

2

1

1
)(

PPP

s
Q
s

sH

ωω
++

=

PQjH

jH

jH

P
=

=

=

=

∞→

=

ωω

ω

ω

ω

ω

ω

)(

0)(

1)(
0



EECS 247 Lecture 2:  Introduction to Filters © 2002 B. Boser   11A/D
DSP

Biquad Poles
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Complex Poles
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Bode Diagram
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Varying Q … Magnitude

Gain at ωp:

20 log Q  [dB]
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Phase

Slope at ωp :

-45 Q deg/decade
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Implementation of Biquads

• Passive RC: only real poles

• Terminated LC
– “lowest power” (well … it’s passive!)
– No noise (except load and source)

• Active Biquad
– Filter texts give you dozens of topologies.

Who needs or wants that many choices?
– Single-opamp biquad: Sallen-Key
– Two-opamp biquad: Tow-Thomas
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Sallen-Key LPF

• Single gain element
• “Parasitic sensitive”
• Versions for LPF, HPF, BP, …

Ref: K. L. Su, “Analog Filters,” Chapman & Hall, 1996, pp. 215.
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Component Sizing Choice 1

4 unknowns: R1, R2, C1, C2

2 knowns: ωP, QP

à problem is underdetermined

Choice 1: minimum component spread
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SK Magnitude Response 1

10% increase of R1
more than doubles QP!

à The circuit is very sensitive
to component variations.
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Component Sizing Choice 2

Choice 2: minimum sensitivity
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Note also:

Huge element spread à
This topology is suitable only for 
low-Q filter implementations.
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SK Magnitude Response 2

10% increase of R1 has only small 
effect on response!

à The circuit is NOT very sensitive 
to component variations.
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Sensitivity

• Implementation and component 
sizing have huge impact on 
sensitivity

• High-sensitivity circuits are 
problems in practice

• No theory for finding a low-
sensitivity architecture

• Ladder filters are usually low 
sensitivity

• Use proven circuits & check!
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Common sense: Sensitivity is a first order approximation, 
correct only for infinitesimally small errors 
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Summary

• Frequency Response
– Poles and zeros are like tent poles and pegs
– Frequency response is evaluated on jω axis
– Poles and zeros close to jω axis dominate resonse

• Practical Implementation Constraints
– Components are not ideal
– Avoid solutions requiring large element spread
– Beware of high-sensitivity architectures


