Introduction to Filters

 Filtering = frequency-selective signal processing
— It's the most common type of signal processing
— Examples:
¢ Extract desired signal from many (radio)
¢ Separating signal and noise
¢ Amplifier bandwidth limitations

* Where to start
— Perfectionist: ideal (low-pass) filter
— Engineer: continuous time, first-order low-pass filter
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First-Order RC Filter (LPF1)

'.I.'","l'.l."" ¥ —l Vout
| 1.5kOhm
i (i-» R | 1
LT ! —_— -
- | 1nF

el ] E] =

Steady-state frequency response:
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with w -1 2p * 100kHz
° RC
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Poles and Zeros

s-plane (pzmap):
H(s)=—— 1w

Pole: p=-w,
Zeo:. z2® ¥
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Magnitude Response

Magnitude Response (s-plane)
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Frequency Response

Asymptotes:
- 20 dB/dec rolloff
- 90 degrees phase shift per 2 decades |
H(s= ), =1 i
[H(s=jw),, =0

w® ¥

Matlab code (LO2_bode_Ipfl.m):
wo = 2*pi *100e3;
s =tf('s'); H
h =11/ (1+s/wo); B
bodehz(h, |ogspace(1, 10, 100));

Note: bodehz is same as bode, but frequency axis *
is in Hz, rather than rad/s.
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Parasitics

Can we really get 100dB attenuation at 10GHz?
— Probably not
— Parasitics limit the performance of analog
components
- E.g.
» Shunt capacitance

» Feed-through capacitance
* Finite inductor, capacitor Q
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Frequency Response
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¢ Why not just make C larger?

« Beware of other parasitics not included in this model ...

DSP
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Continuous Time Analog

* Analog passive components aren't ideal
— Extra real poles/zeroes result from parasitics

— Parasitic effects begin to appear “50dB beyond” desired
component characteristics

— Common sense helps you anticipate them

 Digital filters do not suffer from these effects
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Second-Order LPF

* Improved attenuation (compared to 15t order)
» Complex poles (rather than multiple real ones)
— Why?
— Visualize 3D s-plane plot!
 Biquadratic (2" order) transfer function:

_ 1 [H(wW),, =1
H(S) - 1 SZ |H(jW)|W®¥ =0
+ + = _
WoQp W7 H (JW)|W:NP =Qp
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Biquad Poles

1
H(s) = 5
S
1+ +=
WPQP Wp
w
has polesat s=- —& Qli,/l- 4Q§)
2Q,
for Q. £4 polesarereal, complex otherwise
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Complex Poles

Q>3

s=- gehe iz 1)

Distance from origin in s-plane:
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s-Plane
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LPF3

Magnitude Response (s-plane)
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Frequency Response

Bade Diagram
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Varying Q ... Magnitude

LPF3 Magnitude Response
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Phase

LPF3 Phase Response
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Implementation of Biquads

» Passive RC: only real poles

* Terminated LC
— “lowest power” (well ... it's passive!)
— No noise (except load and source)

» Active Biguad

— Filter texts give you dozens of topologies.
Who needs or wants that many choices?

— Single-opamp biquad: Sallen-Key
— Two-opamp biquad: Tow-Thomas
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Sallen-Key LPF
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» Single gain element k=1"1 1.6
oy . + +
» “Parasitic sensitive” RC, RC, RC,
» Versions for LPF, HPF, BP, ...
Ref: K. L. Su, “Analog Filters,” Chapman & Hall, 1996, pp. 215.
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Component Sizing Choice 1

4 unknowns: R;, R,, C;, C,
2 knowns: w;, Qp
- problem is underdetermined

Choice 1: minimum component spread
C,=C, =1nF
o _ 1
R=R w.C,

G=3- = =29
Q

P

=1.6kW
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SK Magnitude Response 1

Sallen-Key Choice 1 Magnitude Response
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Component Sizing Choice 2

Choice 2: minimum sensitivity

G=1
R =R, = 2kW
Cl:&:lGr]F
WeR
1

C,=———— =40pF
° 2QW.R

Note also:

%:4Q§:4OO

2

Huge element spread >
This topology is suitable only for
low-Q filter implementations.
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SK Magnitude Response 2

Sallen-Key Choice 2 Magnitude Response
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201 B

10% increase of R, has only small
effect on response!

2 - The circuit is NOT very sensitive
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Sensitivity

Definition Dy ng
y X

X dy * Implementation and component
with Y =

BT sizing have huge impact on
sensitivity
Example D% = s DR, . H|gh-sens_|t|V|ty circuits are
Qe R problems in practice

* No theory for finding a low-
sensitivity architecture
DQ: 955 - 9505 » Ladder filters are usually low
° R sensitivity
» Use proven circuits & check!

Choicel S¥ =Q,- 05=95

Choice 2 ST =0

Common sense: Sensitivity is a first order approximation,
correct only for infinitesimally small errors
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Summary

* Frequency Response
— Poles and zeros are like tent poles and pegs
— Frequency response is evaluated on jw axis
— Poles and zeros close to jw axis dominate resonse

» Practical Implementation Constraints
— Components are not ideal
— Avoid solutions requiring large element spread
— Beware of high-sensitivity architectures
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