N247 HW2 Solution

1 Problem 1

The filter is high pass. Using the function bode in matlab, we see that the passband ripple is 2 dB , the stopband attenuation is 50 dB , and the cutoff frequency 1 MHz .(See 1,2)

$w_{p}[\mathrm{rad} / \mathrm{s}]$	Q
23.4 M	-
6.3 M	21.9
8.83 M	4

Tab. 1: Pole Placements

$w_{z}[\mathrm{rad} / \mathrm{s}]$	Q
0	-
4.5 M	∞
3.6 M	∞

Tab. 2: Zero locations
we use the heuristics of lecture 6 and order the biquads in the signal flow starting with the lowest Q and increasing. The second order section is placed first. From Tables 1 and 2, we find that the highest Q poles correspond to the expression $s^{2}+5.831 e 5 s+4.066 e 13(\mathrm{Q}=21.9)$. Therefore we partition the filter design as shown in figure 6 .

Once the capacitors are fixed in the Tow-Thomas biquad we have 6 equations ($\mathrm{a} 0, \mathrm{~b} 0, \mathrm{a} 1, \mathrm{~b} 1, \mathrm{a} 2, \mathrm{~b} 2$), and 8 unknowns $\left(R_{1} \ldots R_{8}\right)$. The equations read:

$$
\begin{array}{r}
a_{0}=\frac{R_{8}}{R_{3} R_{2} R_{7} C_{1} C_{2}} \\
a_{1}=\frac{1}{R_{1} C_{1}} \\
b_{2}=\frac{R_{8}}{R_{6}}=1 \\
b_{1}=a_{1}\left(b_{2}-\frac{R_{1} R_{8}}{R_{4} R_{7}}\right)=0 \\
b_{0}=\frac{R_{8}}{R_{3} R_{5} R_{7} C_{1} C_{2}} \tag{5}
\end{array}
$$

Fig. 1: Filter Frequency response

Fig. 2: Passband detail

Fig. 3: Tow-Thomas Biquad reference schematic

From noise considerations, we also choose $R_{7}=R_{8}$ and $R_{4}=R_{3}$. Using these equations, one obtains:

$$
\begin{array}{r}
a_{0}=\frac{1}{R_{3} R_{2} C_{1} C_{2}} \rightarrow R_{3} R_{2}=\frac{1}{a_{0} C_{1} C_{2}} \\
a_{1}=\frac{1}{R_{1} C_{1}} \rightarrow R_{1}\left(=R_{2}=R_{3}\right)=\frac{1}{a_{1} C_{1}} \\
\frac{a_{0}}{b_{0}}=\frac{R_{5}}{R_{2}} \tag{8}
\end{array}
$$

And finally for the first and the second biquad When placed at the end of the

CELL	$R_{1}=R_{4}=R_{3}$	$R_{6}=R_{7}=R_{8}=R_{2}$	R_{5}
1	$17.15 K \Omega$	$143.4 K \Omega$	$280 K \Omega$
2	$2.35 \mathrm{e} 3 K \Omega$	$544 K \Omega$	$2040 K \Omega$

Tab. 3: Component values before scaling $(\mathrm{C}=100 \mathrm{pF})$
chain. The first order section can implemented in passive way by using a series CR circuit. Notice that this is general not a very scalable implementation as it can be used in this case only because the filter drives an open-circuit load. For the same reason, placing the first order section before the first biquad also results in a transfer function error, due to the finite input impedance of the Tow-Thomas cell. In general, the cell in 4 includes a buffer and therefore can drive resistive loads(provided the buffer output impedance is low enough)-This is a general-

Fig. 4: Active first order cell schematic

Fig. 5: Tow Thomas Biquad with embedded first order cell. $R_{\text {in }}=R_{4}\left\|R_{5}\right\| R_{6}$.

Fig. 6: Filter block diagram

Fig. 7: MATLAB and SPECTRE responses
purpose solution that comes at a noise penalty. Alternatively, one could place a passive first order cell before the first biquad, by relaxing the constraint that the capacitor values be all 100 pF . This way, the input impedance of the Tow-Thomas biquad is used as the resistive part in the $C-R$ circuit. For the first Biquad in this implementation, $R_{\text {in }}=R_{4}\left\|R_{5}\right\| R_{6}=1.1885 K \Omega$ and in $C_{h p}=36 p F$ (See 5. For the active first order cell, instead $C=100 p F, R=\frac{1}{w_{p} C}=421 \Omega$. The response of the implemented filter is shown in figure 7, compared with the MATLAB prediction.

When using the passive first order cell, the simulated integrated noise from 10 KHz to 50 MHz for a filter built using operational amplifiers with $A_{v}=$ $80 d B, f_{u}=1 G H z$ is $V_{n}^{2}=19 n V^{2}$. Since $V_{n}^{2} \alpha \frac{1}{C}$, to meet the noise target $C^{1}=16.9 p F$, and $R^{1}=R_{0} * 100 / 16.9 \approx 5.9 R_{0}$. When replacing the opamps with components with $f_{u}=20 \mathrm{MHz}$, the stopband attenuation is almost unaffected, while the passband ripple increases to 9 dB . Noise is also totally dominated by the opamps. In order to meet noise and error, I found from simulation

$$
\begin{array}{r}
C_{o a}=48 p F \\
R_{n} \leq 250 \Omega \\
f_{u} \geq 128 M H z \tag{11}
\end{array}
$$

2 Problem 2

($C_{o a}$ indicates the filter capacitance to be used with op-amps).

$$
\begin{align*}
& f_{S} \geq 12 M H z \tag{12}\\
y(k) & =\cos (2 \pi .5 / 5 K)+\cos (2 \pi 3 / 5 K)+\cos (2 \pi 6 / 5 K) \tag{13}\\
& =\cos (2 \pi .5 / 5 K)+\cos (2 \pi 3 / 5 K)+\cos (2 \pi 1 / 5 K) \tag{14}
\end{align*}
$$

