Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus

Reasoning About FDs (Review)

- Given some FDs, we can usually infer additional FDs:

 \[\text{title} \rightarrow \text{studio}, \text{star} \implies \text{title} \rightarrow \text{studio} \text{ and } \text{title} \rightarrow \text{star} \]

 But,

 \[\text{title} \rightarrow \text{studio} \text{ does NOT necessarily imply that } \text{title} \rightarrow \text{star} \text{ or that } \text{star} \rightarrow \text{studio} \]

 - An FD is implied by a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.

 \[F^+ = \text{closure of } F \text{ is the set of all FDs that are implied by } F. \]

 (includes "trivial dependencies")

Rules of Inference (Review)

- **Armstrong's Axioms** (\(X, Y, Z \) are sets of attributes):

 - **Reflexivity:** \(X \supseteq Y \), then \(X \rightarrow Y \)
 - **Augmentation:** \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - **Transitivity:** \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

 - These are **sound** and complete inference rules for FDs!
 - i.e., using AA you can compute all the FDs in \(F^+ \) and only these FDs.

 - Some additional rules (that follow from AA):
 - **Union:** \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - **Decomposition:** \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in \# attr!)
- Typically, we just want to check if a given FD \(X \rightarrow Y \) is in the closure of a set of FDs \(F \).

 An efficient check:

 - Compute \(\text{attribute closure} \) of \(X \) (denoted \(X^+ \)) wrt \(F \).

 \[X^+ = \text{Set of all attributes } A \text{ such that } X \rightarrow A \text{ is in } F^+ \]

 - \(X^+ \rightarrow X \)

 - Repeat until no change: if there is an \(fD \ U \rightarrow V \text{ in } F \) such that \(U \text{ is in } X^+ \),

 then add \(V \text{ to } X^+ \)

 - Check if \(Y \text{ is in } X^+ \)

 - Approach can also be used to find the keys of a relation.

 - If all attributes of \(R \) are in the closure of \(X \) then \(X \) is a superkey for \(R \).

 - Q: How to check if \(X \) is a "candidate key"?

Normal Forms

- Back to schema refinement...

 Q1: is any refinement needed?!

 - If a relation is in a normal form (BCNF, 3NF etc.):

 - we know that certain problems are avoided/minimized.

 - helps decide whether decomposing a relation is useful.

 - **Role of FDs in detecting redundancy:**

 - Consider a relation \(R \) with 3 attributes, ABC.

 - No (non-trivial) FDs hold: There is no redundancy here.

 - Given \(A \rightarrow B \): If \(A \) is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!

 - **1st Normal Form** – all attributes are atomic

 - i.e. the relational model

 - **1st ⊕ 2nd (of historical interest) ⊕ 3rd ⊕ Boyce-Codd ⊕ ...
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs \(F \) is in BCNF if, for all \(X \rightarrow A \) in \(F^+ \)

 - \(A \subseteq X \) (called a trivial FD), or

 - \(X \) is a superkey for \(R \).

- In other words, “\(R \) is in BCNF if the only non-trivial FDs over \(R \) are key constraints.”

- If \(R \) in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.

 - Say we know \(F \) \(X \rightarrow A \) holds this example relation:

X	Y	A
x	y1	A
x	y2	?

• Can you guess the value of the missing attribute?

 • Yes, so relation is not in BCNF

Example (same as before)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

SNLRWH has FDs \(S \rightarrow SNLRWH \) and \(R \rightarrow W \)
• Q: Is this relation in BCNF?

No, The second FD causes a violation; \(W \) values repeatedly associated with \(R \) values.

Decomposition of a Relation Schema

- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.

- Suppose that relation \(R \) contains attributes \(A_1 \ldots A_n \). A decomposition of \(R \) consists of replacing \(R \) by two or more relations such that:

 - Each new relation scheme contains a subset of the attributes of \(R \), and

 - Every attribute of \(R \) appears as an attribute of at least one of the new relations.

Decomposing a Relation

- Easiest fix is to create a relation \(RW \) to store these associations, and to remove \(W \) from the main schema:

S	N	L	R	H	W	H
123-22-3666	Atishoo	48	8	40		
231-31-5368	Smiley	22	8	30		
131-24-3650	Smethurst	35	5	30		
434-26-3751	Guldu	35	5	32		
612-67-4134	Madayan	35	8	40		

R	W	H
8	10	
5	7	

Hourly_Emps

Hourly_Emps2

• Q: Are both of these relations now in BCNF?

• Decompositions should be used only when needed.

 - Q: potential problems of decomposition?

Problems with Decompositions

- There are three potential problems to consider:

 1) May be impossible to reconstruct the original relation! (Lossy Decomposition)
 • Fortunately, not in the SNLRWH example.

 2) Dependency checking may require joins (not Dependency Preserving)
 • Fortunately, not in the SNLRWH example.

 3) Some queries become more expensive.
 • e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.
(Well, not usually #1)

Lossless Decomposition (example)
Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

A → B; C → B

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

A → B; C → B

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless w.r.t. a set of FDs F if, for every instance r that satisfies F:
 \(\pi_X(r) \times \pi_Y(r) = r \)
- It is always true that \(r \subseteq \pi_X(r) \times \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)

More on Lossless Decomposition

- The decomposition of R into X and Y is lossless with respect to F if and only if the closure of F contains:
 \(X \cap Y \rightarrow X \), or \(X \cap Y \rightarrow Y \)
 - In example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.
- Useful result: If \(W \rightarrow Z \) holds over R and \(W \cap Z \) is empty, then decomposition of R into R-Z and WZ is loss-less.

Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem #2 on our list.)
 - Why do we care??
- Projection of set of FDs F: If R is decomposed into X and Y the projection of F on X (denoted \(F_X \)) is the set of FDs \(U \rightarrow V \) in \(F^+ \) (closure of F, not just F) such that all of the attributes \(U, V \) are in X. (same holds for Y of course)

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if \((F_X \cup F_Y)^+ = F^+ \)
 - i.e., if we consider only dependencies in the closure \(F^+ \) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+ \).
 - Important to consider \(F^+ \) in this definition:
 - ABC, A → B, B → C, C → A, decomposed into AB and BC.
 - Is this dependency preserving? Is C → A preserved?????
 - note: \(F^+ \) contains \(F \cup (A \rightarrow C, B \rightarrow C, C \rightarrow B) \), so...
 - \(F_{ab} \) contains A → B and \(F_{ac} \) contains B → C and C → B
 - So, \((F_{ab} \cup F_{ac})^+ \) contains C → A
Decomposition into BCNF

- Consider relation R with FDs F. If \(X \rightarrow Y \) violates BCNF, decompose R into R - Y and XY (guaranteed to be loss-less).
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDQV, key C, JP \(\rightarrow C \), SD \(\rightarrow P \), J \(\rightarrow S \)
 - \{contractid, supplierid, projectid, deptid, partid, qty, value\}
 - To deal with SD \(\rightarrow P \), decompose into SDP, CSJDQV.
 - To deal with J \(\rightarrow S \), decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we `deal with` them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \(\rightarrow Z \), Z \(\rightarrow C \)
 - Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP \(\rightarrow C \), SD \(\rightarrow P \) and J \(\rightarrow S \)).
 - \{contractid, supplierid, projectid, deptid, partid, qty, value\}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all \(X \rightarrow A \) in F
 - A \(\in X \) (called a trivial FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R. (sometimes stated as "A is prime")
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good" decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by \(X \rightarrow A \), one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store \((X, A) \) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBDC and S \(\rightarrow C \)
 - X is a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs \(K \rightarrow X \rightarrow A \)
 - So we can't associate an X value with a K value unless we also associate an A value with an X value (different Ks, same X implies same A!)
 - problem with initial 3NF/WH example.
 - But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: "C" is for credit card here), S \(\rightarrow C \), C \(\rightarrow S \) is in 3NF (why?)
 - Even so, for each reservation of sailor S, same (S, C) pair is stored.
 - Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues in your application code!

An Aside: Second Normal Form

- Like 3NF, but allows transitive dependencies:
 - Reln R with FDs F is in 2NF if, for all \(X \rightarrow A \) in F
 - A \(\in X \) (called a trivial FD), or
 - X is a superkey of R, or
 - A is part of any candidate key for R.
 - i.e. "X is not prime"
 - There's no reason to use this in practice
 - And we won't expect you to remember it

Decomposition into 3NF

- Obviously, the algorithm for lossless join decom into BCNF can be used to obtain a lossless join decom into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If \(X \rightarrow Y \) is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to ‘preserve’ JP \(\rightarrow C \). What if we also have J \(\rightarrow C \)?
 - Refinement: Instead of the given set of FDs F, use a minimal cover for F.
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = $ closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- **Intuitively**, every FD in G is needed, and "as small as possible" in order to get the same closure as F.

- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$

- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book, p. 627)

Summary of Schema Refinement

- **BCNF**: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.

- **Not in BCNF?** Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!

- **Lossless-join, dependency preserving decomposition into BCNF impossible?** Consider 3NF.
 - Same if BCNF decompos is unsuitable for typical queries

- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.

- **Note**: even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)