Today

- Formalizing Learning
 - Consistency
 - Simplicity

- Decision Trees
 - Expressiveness
 - Information Gain
 - Overfitting

Inductive Learning

- Simplest form: learn a function from examples
 - A target function f
 - Examples: input-output pairs $(x, f(x))$
 - E.g. x is an email and $f(x)$ is spam/ham
 - E.g. x is a house and $f(x)$ is its selling price

- Problem:
 - Given a hypothesis space H
 - Given a training set of examples x_i
 - Find a hypothesis $h(x)$ such that $h \sim f$

- Includes:
 - Classification (multinomial outputs)
 - Regression (real outputs)
 - How do perceptron and naïve Bayes fit in? ($H, f, h,$ etc.)

Consistency vs. Simplicity

- Fundamental tradeoff: bias vs. variance, etc.
- Usually algorithms prefer consistency by default (why?)
- Several ways to operationalize "simplicity"
 - Reduce the hypothesis space
 - Assume more: e.g. independence assumptions, as in naïve Bayes
 - Have fewer, better features / attributes: feature selection
 - Other structural limitations (decision lists vs trees)
 - Regularization
 - Smoothing: cautious use of small counts
 - Many other generalization parameters (pruning cutoffs today)
 - Hypothesis space stays big, but harder to get to the outskirts

Reminder: Features

- Features, aka attributes
 - Sometimes: TYPE=French
 - Sometimes: $f_{TYPE=French}(x) = 1$
Decision Trees

- Compact representation of a function:
 - Truth table
 - Conditional probability table
 - Regression values

- True function
 - Realizable: in H

Expressiveness of DTs

- Can express any function of the features

Comparison: Perceptrons

- What is the expressiveness of a perceptron over these features?

<table>
<thead>
<tr>
<th>Example</th>
<th>A</th>
<th>B</th>
<th>A xor B</th>
<th>Target</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- DTs automatically conjoin features / attributes
- Features can have different effects in different branches of the tree
- For a perceptron, a feature’s contribution is either positive or negative
- If you want one feature’s effect to depend on another, you have to add a new conjunction feature
- E.g., adding “PATRONS=full” AND “WAIT = 30” allows a perceptron to model the interaction between the two atomic features
- Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
- Though if the interactions are too complex, may not find the DT greedy

Hypothesis Spaces

- How many distinct decision trees with n Boolean attributes?
 - number of Boolean functions over n attributes
 - number of distinct truth tables with 2^n rows
 - 2^{2^n}
 - E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

- How many trees of depth 1 (decision stumps)?
 - number of Boolean functions over 1 attribute
 - number of truth tables with 2 rows, times n
 - $4n$
 - E.g. with 6 Boolean attributes, there are 24 decision stumps

- More expressive hypothesis space:
 - Increases chance that target function can be expressed (good)
 - Increases number of hypotheses consistent with training set (bad, why?)
 - Means we can get better predictions (lower bias)
 - But we may get worse predictions (higher variance)

Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose “most significant” attribute as root of (sub)tree

Choosing an Attribute

- Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or “all negative”

- So: we need a measure of how “good” a split is, even if the results aren’t perfectly separated out
Entropy and Information

- **Information** answers questions
 - The more uncertain about the answer initially, the more information in the answer
 - Scale: bits
 - Answer to Boolean question with prior \(<1/2, 1/2>\)?
 - Answer to 4-way question with prior \(<1/4, 1/4, 1/4, 1/4>\)?
 - Answer to 4-way question with prior \(<0, 0, 1>\)?
 - Answer to 3-way question with prior \(<1/2, 1/4, 1/4>\)?)

- A probability \(p\) is typical of:
 - A uniform distribution of size \(1/p\)
 - A code of length \(\log 1/p\)

Entropy

- General answer: if prior is \(<p_1, \ldots, p_n>\):
 - Information is the expected code length
 \[
 H(p_1, \ldots, p_n) = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i}
 \]
 - Also called the entropy of the distribution
 - More uniform = higher entropy
 - More values = higher entropy
 - More peaked = lower entropy
 - Rare values almost “don’t count”

Information Gain

- Back to decision trees!
- For each split, compare entropy before and after
 - Difference is the information gain
 - Problem: there’s more than one distribution after split

Solution: use expected entropy, weighted by the number of examples
- Note: hidden problem here! Gain needs to be adjusted for large-domain splits – why?

Next Step: Recurse

- Now we need to keep growing the tree
- Two branches are done (why?)
- What to do under “full”?
 - See what examples are there…

Example: Learned Tree

- Decision tree learned from these 12 examples:
 - Substantially simpler than “true” tree
 - A more complex hypothesis isn’t justified by data
 - Also: it’s reasonable, but wrong

Example: Miles Per Gallon

- Table of 40 Examples with features like cylinders, displacement, horsepower...
- Decision tree learned from these 40 examples:
Find the First Split

- Look at information gain for each attribute
- Note that each attribute is correlated with the target!
- What do we split on?

Result: Decision Stump

Second Level

Final Tree

Reminder: Overfitting

- Overfitting:
 - When you stop modeling the patterns in the training data (which generalize)
 - And start modeling the noise (which doesn’t)
- We had this before:
 - Naïve Bayes: needed to smooth
 - Perceptron: didn’t really say what to do about it (stay tuned!)

MPG Training Error

The test set error is much worse than the training set error... ...why?
Consider this split

Significance of a Split

- **Starting with:**
 - Three cars with 4 cylinders, from Asia, with medium HP
 - 2 bad MPG
 - 1 good MPG
- **What do we expect from a three-way split?**
 - Maybe each example in its own subset?
 - Maybe just what we saw in the last slide?
- **Probably shouldn't split if the counts are so small they could be due to chance**
 - A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance (details in the book)
 - Each split will have a significance value, \(p_{\text{CHANCE}} \)

Pruning example

- With \(\text{MaxP}_{\text{CHANCE}} = 0.1 \):
 - Note the improved test set accuracy compared with the unpruned tree

Keeping it General

- **Pruning:**
 - Build the full decision tree
 - Begin at the bottom of the tree
 - Delete splits in which \(p_{\text{CHANCE}} > \text{MaxP}_{\text{CHANCE}} \)
 - Continue working upward until there are no more prunable nodes
 - Note: some chance nodes may not get pruned because they were "redeemed" later

Regularization

- \(\text{MaxP}_{\text{CHANCE}} \) is a regularization parameter
- Generally, set it using held-out data (as usual)

Two Ways of Controlling Overfitting

- **Limit the hypothesis space**
 - E.g. limit the max depth of trees
 - Easier to analyze (coming up)
- **Regularize the hypothesis selection**
 - E.g. chance cutoff
 - Disprefer most of the hypotheses unless data is clear
 - Usually done in practice
Learning Curves

- Another important trend:
 - More data is better!
 - The same learner will generally do better with more data
 - (Except for cases where the target is absurdly simple)

Summary

- Formalization of learning
 - Target function
 - Hypothesis space
 - Generalization

- Decision Trees
 - Can encode any function
 - Top-down learning (not perfect!)
 - Information gain
 - Bottom-up pruning to prevent overfitting