Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data (or can get it)

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could “similar” mean?
 - One option: small (squared) Euclidean distance
 \[\text{dist}(x, y) = (x - y)^T (x - y) = \sum_i (x_i - y_i)^2 \]
K-Means Example

K-Means as Optimization
- Consider the total distance to the means:
 \[\phi(x_i, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_k) \]
- Each iteration reduces \(\phi \)
- Two stages each iteration:
 - Update assignments: fix means \(c \), change assignments \(a \)
 - Update means: fix assignments \(a \), change means \(c \)

Phase I: Update Assignments
- For each point, re-assign to closest mean:
 \[a_i = \arg \min_k \text{dist}(x_i, c_k) \]
- Can only decrease total distance \(\phi \):
 \[\phi(x_i, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, a_i, c_i) \]

Phase II: Update Means
- Move each mean to the average of its assigned points:
 \[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]
- Also can only decrease total distance!
- Why?
- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean

Initialization
- K-means is non-deterministic
- Requires initial means
- It does matter what you pick!
- What can go wrong?
- Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics

K-Means Getting Stuck
- A local optimum:
K-Means Questions

- Will K-means converge?
 - To a global optimum?

- Will it always find the true patterns in the data?
 - If the patterns are very very clear?

- Will it find something interesting?

- Do people ever use it?

- How many clusters to pick?

Clustering for Segmentation

- Quick taste of a simple vision algorithm

- Idea: break images into manageable regions for visual processing (object recognition, activity detection, etc.)

Representing Pixels

- Basic representation of pixels:
 - 3 dimensional color vector \(<r, g, b> \)
 - Ranges: \(r, g, b \in [0, 1] \)
 - What will happen if we cluster the pixels in an image using this representation?

- Improved representation for segmentation:
 - 5 dimensional vector \(<r, g, b, x, y> \)
 - Ranges: \(x \in [0, M] \), \(y \in [0, N] \)
 - \(M, N \) makes position more important
 - How does this change the similarities?

- Note: real vision systems use more sophisticated encodings which can capture intensity, texture, shape, and so on.

K-Means Segmentation

- Results depend on initialization!
 - Why?

- Note: best systems use graph segmentation algorithms

Other Uses of K-Means

- Speech recognition: can use to quantize wave slices into a small number of types (SOTA: work with multivariate continuous features)

- Document clustering: detect similar documents on the basis of shared words (SOTA: use probabilistic models which operate on topics rather than words)

Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters

- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left

- Produces not one clustering, but a family of clusterings represented by a dendrogram
Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Distance between centroids (broken)
 - Ward’s method (my pick, like k-means)
- Different choices create different clustering behaviors

Back to Similarity

- K-means naturally operates in Euclidean space (why?)
- Agglomerative clustering didn’t require any mention of averaging
 - Can use any function which takes two instances and returns a similarity
 - (if your similarity function has the right properties, can adapt k-means too)
- Kinds of similarity functions:
 - Euclidian (dot product)
 - Weighted Euclidian
 - Edit distance between strings
 - Anything else?

Similarity Functions

- Similarity functions are very important in machine learning
- Topic for next class: kernels
 - Similarity functions with special properties
 - The basis for a lot of advance machine learning (e.g. SVMs)

Case-Based Reasoning

- Similarity for classification
 - Case-based reasoning
 - Predict an instance’s label using similar instances
- Nearest-neighbor classification
 - 1-NN: copy the label of the most similar data point
 - K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)
- Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?
- [DEMO]

Parametric / Non-parametric

- Parametric models:
 - Fixed set of parameters
 - More data means better settings
- Non-parametric models:
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit
- (K)NN is non-parametric

http://www.cs.cmu.edu/~zhuxj/courseproject/knn/demos/KNN.html
Collaborative Filtering

- Ever wonder how online merchants decide what products to recommend to you?
- Simplest idea: recommend the most popular items to everyone
 - Not entirely crazy! (Why)
 - Can do better if you know something about the customer (e.g. what they've bought)
- Better idea: recommend items that similar customers bought
- A popular technique: collaborative filtering
 - Define a similarity function over customers (how?)
 - Look at purchases made by people with high similarity
 - Trade-off: relevance of comparison set vs confidence in predictions
- How can this go wrong?

Next Class

- Kernel methods / SVMs
- Basis for a lot of SOTA classification tech