Recap: HMMs

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You only observe outputs (effects) E at each time step
 - Want to reason about the hidden states X given observations E

$$P(x_{1:T}, e_{1:T}) = P(x_1)P(e_1|x_1) \prod_{t=2}^{T} P(x_t|x_{t-1})P(e_t|x_t).$$

Recap: Speech Recognition

- Observations are acoustic measurements
 - Real systems:
 - 39 MFCC coefficients
 - Real numbers, modeled with mixtures of multidimensional Gaussians
 - Your projects:
 - 2 real numbers (formant frequencies)
 - Discretized values, discrete conditional probs

Speech Recognition

- States indicate which part of which word we’re speaking
 - Each word broken into phonemes
 - Real systems: context-dependent sub-phonemes
 - Your projects: just one state per phoneme
- Example: Yes/No recognizer

$$P(x | x')$$

- $P(x|x_0) = 0.5$ if $x = x_1$, 0.5 if $x = x_4$, 0 otherwise
- $P(x|x_1) = 0.8$ if $x = x_1$, 0.2 if $x = x_2$, 0 otherwise

Speech Recognition

- Emission probs: distribution over acoustic observations for each phoneme
 - How to learn these? See project 3!

$$P(e | "0") = \begin{bmatrix} 0.1 & 0.2 \end{bmatrix} \ldots$$

$$P(e | "s") = \begin{bmatrix} 0.6 & 0.2 & 0.1 \end{bmatrix} \ldots$$

Example of Hidden Sequences

- For the yes/no recognizer, imagine we hear “yynoo"
- What are the scores of possible labelings?

$$E$$

- X Low, best?
- VV Low
- V Low
- ZERO
The Viterbi Algorithm

- The Viterbi algorithm computes the best labeling for an observation sequence
 - Incrementally computes best scores for subsequences
 - Recurrence:
 \[
 m_t[x_t] = \max_{x_{t-1}} P(x_{t-1}, x_t, \epsilon_{t-1}) \\
 = \max_{x_{t-1}} P(x_{t-1}, \epsilon_{t-1}) P(x_t | x_{t-1}) P(\epsilon_t | x_t) \\
 = P(\epsilon_t | x_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m_{t-1}[x_{t-1}] \\
 = P(\epsilon_t | x_t) \max_{x_{t-1}} [m_{t-1}[x_{t-1}]] \\
 \]
 - Also store backtraces which record the argmaxes

Example

\[<s> \quad y \quad s \quad n \quad o \quad <s> \]
\[e_0 \quad \gamma' \quad \gamma'' \quad \gamma'' \quad \gamma'' \quad \gamma'' \]

Utilities

- So far: talked about beliefs

- Important difference between:
 - Belief about some variables
 - Rational action involving those variables
 - Remember the midterm question?

- Next: utilities

Preferences

- An agent chooses among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 \[L = [p, A; (1 - p), B] \]

- Notation:
 \[A \succ B \] A preferred over B
 \[A \sim B \] indifference between A and B
 \[A \succeq B \] B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational

- For example: an agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with A would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

- Preferences of a rational agent must obey constraints.
- These constraints (plus one more) are the axioms of rationality

 \begin{align*}
 \text{Orderability} & \quad (A \succ B) \Rightarrow (B \succ A) \Rightarrow (A \sim B) \\
 \text{Transitivity} & \quad (A \succ B) \Rightarrow (B \succ C) \Rightarrow (A \succ C) \\
 \text{Continuity} & \quad A > B \Rightarrow [p, A; 1 - p, C] \sim B \\
 \text{Substitutability} & \quad A \sim B \Rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C] \\
 \text{Monotonicity} & \quad A > B \Rightarrow (p \geq q \Rightarrow [p, A; 1 - p, B] \succeq [q, A; 1 - q, B]) \\
 \end{align*}

- Theorem: Rational preferences imply behavior describable as maximization of expected utility
MEU Principle

- **Theorem:**
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

 $$ U(A) \geq U(B) \iff A \succeq B $$

 $$ U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i) $$

- Maximum expected likelihood (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_p between
 - “best possible prize” u_+ with probability p
 - “worst possible catastrophe” u_- with probability $1-p$
 - Adjust lottery probability p until $A \sim L_p$
 - Resulting p is a utility in $[0,1]$

Utility Scales

- Normalized utilities: $u_+ = 1.0, u_- = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

 $$ U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0 $$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

- Money does not behave as a utility function
- Given a lottery L:
 - Define expected monetary value $EMV(L)$
 - Usually $U(L) < U(EMV(L))$
 - I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
 - A prize x
 - A lottery $[p, \$M; (1-p), \$0]$ for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Example: Insurance

- Consider the lottery $[0.5, \$1000; 0.5, \$0]$?
 - What is its expected monetary value? ($\$500$)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - $\$400$ for most people
 - Difference of $\$100$ is the insurance premium
 - There’s an insurance industry because people will pay to reduce their risk
 - If everyone were risk-prone, no insurance needed!

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8, $\$4k; 0.2, $\$0$]
 - B: [1.0, $\$3k; 0.0, $\$0$]
 - C: [0.2, $\$4k; 0.8, $\$0$]
 - D: [0.25, $\$3; 0.75, $\$0$]
 - Most people prefer $B > A, C > D$
 - But if $U(\$0) = 0$, then
 - $B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)$
 - $C > D \Rightarrow 0.8 U(\$4k) > U(\$3k)$
Decision Networks

- Extended BNs
 - Chance nodes (circles, like in BNs)
 - Decision nodes (rectangles)
 - Utility nodes (diamonds)
- Can query to find action with max expected utility
- Online applets if you want to play with these

Value of Information

- Idea: compute value of acquiring each possible piece of evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - Prior probabilities 0.5 each, mutually exclusive
 - Current price of each block is k/2
 - "Consultant" offers accurate survey of A. Fair price?
- Solution: compute expected value of information
 = expected value of best action given the information minus expected value of best action without information
- Survey may say "oil in A" or "no oil in A", prob 0.5 each (given!)
 = [0.5 * value of "buy A" given "oil in A"] + [0.5 * value of "buy B" given "no oil in A"]
 = 0
 = [0.5 * k/2] + [0.5 * k/2] - 0 = k/2

General Formula

- Current evidence E, current best action a
- Possible action outcomes S_j, potential new evidence E_j

$$ EU(a|E) = \max_{a} \sum_j U(S_j) P(S_j|E, a) $$

- Suppose we knew $E_j = e_j$, then we would choose $a(e_j)$:

$$ EU(a_{e_j}|E, E_j = e_j) = \max_{a} \sum_j U(S_j) P(S_j|E, a, E_j = e_j) $$

- BUT E_j is a random variable whose value is currently unknown, so:
 - Must compute expected gain over all possible values

$$ VPI_E(E_j) = \left(\sum_k P(E_j = e_j|E) EU(a_{e_j}|E, E_j = e_j) \right) - EU(a|E) $$

(VPI = value of perfect information)

VPI Properties

- Nonnegative in expectation
 $$ \forall j, E : VPI_E(E_j) \geq 0 $$

- Nonadditive -- consider, e.g., obtaining E_j twice
 $$ VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k) $$

- $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_E, E_j(E_k)$

Next Class

- Start on reinforcement learning!
 - Central idea of modern AI
 - How to learn complex behaviors from simple feedback
 - Basic technique for robotic control
 - Last large technical unit of the course