Reinforcement Learning

- [Demos]

- **Basic idea:**
 - Receive feedback in the form of rewards
 - Must learn to act so as to maximize expected rewards
 - Agent’s utility is defined by the reward function
 - Change the rewards, change the behavior!

- **Examples:**
 - Playing a game, reward at the end for winning / losing
 - Vacuuming a house, reward for each piece of dirt picked up
 - Automated taxi, reward for each passenger delivered
Markov Decision Processes

- Markov decision processes (MDPs)
 - A set of states \(s \in S \)
 - A model \(T(s,a,s') = P(s' | s,a) \)
 - Probability that action \(a \) in state \(s \) leads to \(s' \)
 - A reward function \(R(s) \) (or \(R(s,a,s') \))

- MDPs are the simplest case of reinforcement learning
 - In general reinforcement learning, we don’t know the model or the reward function

MDP Solutions

- In state-space search, want an optimal sequence of actions from start to a goal
- In an MDP, want an optimal policy \(\pi(s) \)
 - A policy gives an action for each state
 - Optimal policy is the one which maximizes expected utility (i.e. expected rewards) if followed
 - Gives a reflex agent!

Optimal policy when \(R(s) = -0.04 \):
Example Optimal Policies

Stationarity

- In order to formalize optimality of a policy, need to understand utilities of reward sequences
- Typically consider stationary preferences:

\[
[r; r_0, r_1, r_2, \ldots] > [r; r_0', r_1', r_2', \ldots]
\]

\[
[r_0, r_1, r_2, \ldots] > [r_0', r_1', r_2', \ldots]
\]

- Theorem: only two ways to define stationary utilities
 - Additive utility:
 \[
 U([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \cdots
 \]
 - Discounted utility:
 \[
 U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots
 \]
How (Not) to Solve an MDP

- The inefficient way:
 - Enumerate policies
 - Calculate the expected utility (discounted rewards) starting from the start state
 - E.g. by simulating a bunch of runs
 - Choose the best policy
 - We’ll return to a (better) idea like this later

Utilities of States

- Idea: calculate the utility (value) of each state
 \[U(s) = \text{expected (discounted) sum of rewards assuming optimal actions} \]
 - Given the utilities of states, MEU tells us the optimal policy
 \[
 \pi^U(s) = \arg \max_a E_{P(s'|s,a)} U(s')
 \]
 \[
 = \arg \max_a U(s') T(s, a, s')
 \]
Infinite Utilities?!

- Problem: infinite state sequences with infinite rewards

- Solutions:
 - Finite horizon:
 - Terminate after a fixed T steps
 - Gives nonstationary policy (\(\pi \) depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually “die”
 - Discounting: for \(0 < \gamma < 1 \)
 \[
 U([s_0, \ldots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\text{max}}}{1 - \gamma}
 \]
 - Smaller \(\gamma \) means smaller horizon

The Bellman Equation

- Definition of state utility leads to a simple relationship amongst utility values:

 Expected rewards = current reward +
 \(\gamma \) x expected sum of rewards after taking best action

- Formally:

 \[
 U(s) = R(s) + \gamma \max_a E_{P(s'|a,s)} U(s')
 \]
 \[
 = R(s) + \gamma \max_a \sum_{s'} U(s') T(s, a, s')
 \]
 \[
 = R(s) + \gamma \sum_{s'} U(s') T(s, \pi^U(a), s')
 \]
Example: Bellman Equations

![Bellman Equation Example]

\[U(1,1) = -0.04 + \gamma \text{ max}\{0.8U(1,2)+0.1U(2,1)+0.1U(1,1),\]
\[0.9U(1,1)+0.1U(1,2),\]
\[0.9U(1,1)+0.1U(2,1),\]
\[0.8U(2,1)+0.1U(1,2)+0.1U(1,1)\}\]

Value Iteration

- **Idea:**
 - Start with bad guesses at utility values (e.g. \(U_0(s) = 0 \))
 - Update using the Bellman equation (called a value update or Bellman update):
 \[U_{i+1}(s) = R(s) + \gamma \max_a E_P(s'|a,s)U_i(s') \]
 \[= R(s) + \gamma \max_a \sum_{s'} U_i(s')T(s,a,s') \]
 - Repeat until convergence

- **Theorem:** will converge to unique optimal values
 - Basic idea: bad guesses get refined towards optimal values
 - Policy may converge before values do
Example: Bellman Updates

\[U_{i+1}(s) = R(s) + \gamma \max_a \sum_{s'} U_i(s')T(s, a, s') \]

\[= 0 + 0.9 \sum_{s'} U_i(s')T(3, 3, \text{right}, s') \]

\[= 0 + 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0] \]

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates
- [DEMO]
Convergence*

- Define the max-norm: \(||U|| = \max_s |U(s)| \)

- Theorem: For any two approximations U and V

\[
||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t||
\]

 \[\text{i.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution}\]

- Theorem:

\[
||U^{t+1} - U^t|| < \varepsilon, \Rightarrow ||U^{t+1} - U|| < 2\varepsilon/(1 - \gamma)
\]

 \[\text{i.e. one the change in our approximation is small, it must also be close to correct}\]

Policy Iteration

- Alternate approach:
 - Policy evaluation: calculate utilities for a fixed policy
 - Policy improvement: update policy based on resulting utilities

- Repeat until convergence

- This is policy iteration
 - Can converge faster under some conditions
Policy Evaluation

- If we have a fixed policy \(\pi \), use simplified Bellman equation to calculate utilities:

\[
U_{i+1}^\pi(s) = R(s) + \gamma \sum_{s'} U_i(s') T(s, \pi(s), s')
\]

Policy Improvement

- For fixed utilities, easy to find the best action according to one-step lookahead

\[
\pi_{i+1}^U(s) = \arg \max_a \sum_{s'} U(s') T(s, a, s')
\]
Comparison

- In value iteration:
 - Every pass (or “backup”) updates both policy (based on current utilities) and utilities (based on current policy)

- In policy iteration:
 - Several passes to update utilities
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Next Class

- In real reinforcement learning:
 - Don’t know the reward function $R(s)$
 - Don’t know the model $T(s,a,s')$
 - So can’t do Bellman updates!

- Need new techniques:
 - Q-learning
 - Model learning
 - Agents actually have to interact with the environment rather than simulate it!