Today

- More MDPs: policy iteration
- Reinforcement learning
 - Passive learning
 - Active learning

Recap: MDPs

- Markov decision processes (MDPs)
 - A set of states \(s \in S \)
 - A model \(T(s,a,s') \)
 - Probability that the outcome of action \(a \) in state \(s \) is \(s' \)
 - A reward function \(R(s) \)

- Solutions to an MDP
 - A policy \(\pi(s) \)
 - Specifies an action for each state
 - We want to find a policy which maximizes total expected utility = expected (discounted) rewards

Bellman Equations

- The value of a state according to \(\pi \)
 \[U^\pi(s) = R(s) + \gamma \sum_{s'} T(s',a,s') U^\pi(s') \]
- The policy according to a value \(U \)
 \[\pi^U(s) = \arg \max_a \sum_{s'} T(s',a,s') U(s') \]
- The optimal value of a state
 \[U^*(s) = R(s) + \gamma \max_a \sum_{s'} T(s',a,s') U^*(s') \]

Recap: Value Iteration

- Idea:
 - Start with (bad) value estimates (e.g. \(U_0(s) = 0 \))
 - Start with corresponding (bad) policy \(\pi_0(s) \)
 - Update values using the Bellman relations (once)
 \[U_{i+1}(s) = R(s) + \gamma \sum_{s'} T(s',a,s') U_i(s') \]
 - Update policy based on new values
 \[\pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s',a,s') U_{i+1}(s') \]
 - Repeat until convergence

Policy Iteration

- Alternate approach:
 - Policy evaluation: calculate exact utility values for a fixed policy
 - Policy improvement: update policy based on values
 - Repeat until convergence
- This is policy iteration
 - Can converge faster under some conditions
Policy Evaluation

- If we have a fixed policy π, use a simplified Bellman update to calculate utilities:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s,a,s') U^{\pi}(s')$$

- Unlike in value iteration, policy does not change during update process.
- Converges to the expected utility values for this π.
- Can also solve for U with linear algebra methods instead of iteration.

Policy Improvement

- Once values are correct for current policy, update the policy:

$$\pi_{t+1}(s) = \arg \max_a \sum_{s'} T(s,a,s') U^{\pi}(s')$$

- Note:
 - Value iteration: update U, π, U, π, U...
 - Policy iteration: U, U, U... π, U, U, U... π
 - Otherwise, basically the same!

Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states $s \in S$
 - A model $T(s,a,s')$
 - A reward function $R(s)$
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated
 - Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Autonomous Helicopter

- Example: Autonomous Helicopter
Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to U(s) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- (We’ll cover game playing in a few weeks)

Example: Direct Estimation

- **Episodes:**
 - (1,1) -1 up
 - (1,2) -1 up
 - (1,3) -1 right
 - (2,3) -1 right
 - (3,3) -1 right
 - (3,2) -1 up
 - (4,3) +100

 - U(1,1) = (92 + -106) / 2 = -7
 - U(3,3) = (99 + 97 + -102) / 3 = -31.3

Example: Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s) the first time we enter s
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes "stationary noise")

Example: Model-Free Learning

- **Big idea:** why bother learning T?
 - Update each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- **Temporal difference learning (TD)**
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

 $U^T(s) = R(s) + \gamma \sum_{s'} T(s'|s)U^T(s', \pi(s'))$

 $U^T(s) \leftarrow U^T(s) + \alpha \left(R(s) + \gamma U^T(s') - U^T(s) \right)$

- [DEMO]

Passive Learning

- **Simplified task**
 - You don’t know the transitions T(s,a,s')
 - You don’t know the rewards R(s)
 - You DO know the policy \(\pi(s) \)
 - Goal: learn the state values (and maybe the model)

- In this case:
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon
Example: Passive TD

\[U^\pi(s) \leftarrow U^\pi(s) + \alpha \left[r(s) + \gamma U^\pi(s') - U^\pi(s) \right] \]

(1,1) -1 up
(1,2) -1 up
(1,3) -1 right
(2,3) -1 right
(3,3) -1 right
(3,2) -1 left
(4,3) +100

Take \(\gamma = 1 \), \(\alpha = 0.1 \)

Example: Greedy Active Learning

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy

(Greedy) Active Learning

- In general, want to learn the optimal policy
- Idea:
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat

What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Next Time

- Active reinforcement learning
 - Q learning
 - Balancing exploration / exploitation

- Function approximation
 - Generalization for reinforcement learning
 - Modeling utilities for complex spaces