Recap: Minimax Trees
Minimax Search

\begin{align*}
\text{function } & \text{MAX-VALUE}(\text{state}) \text{ returns a utility value} \\
& \text{if TERMINAL-TEST}(\text{state}) \text{ then return UTILITY}(\text{state}) \\
& v \leftarrow -\infty \\
& \text{for } a, s \in \text{Successors}(\text{state}) \text{ do } v \leftarrow \text{Max}(v, \text{MIN-VALUE}(s)) \\
& \text{return } v \\
\end{align*}

\begin{align*}
\text{function } & \text{MIN-VALUE}(\text{state}) \text{ returns a utility value} \\
& \text{if TERMINAL-TEST}(\text{state}) \text{ then return UTILITY}(\text{state}) \\
& v \leftarrow -\infty \\
& \text{for } a, s \in \text{Successors}(\text{state}) \text{ do } v \leftarrow \text{Min}(v, \text{MAX-VALUE}(s)) \\
& \text{return } v \\
\end{align*}

DFS Minimax

[Diagram of a decision tree with labels 3, 12, 8, 2, 4, 6, 14, 5, 2, A1, A2, A3, A11, A12, A13, A21, A22, A23, A31, A32, A33]
\(\alpha\)-\(\beta\) Pruning Example

- [Code in book]

\[\begin{align*}
\alpha \text{ is the best value (to MAX) found so far off the current path} \\
\text{If } V \text{ is worse than } \alpha, \text{ MAX will avoid it, so prune } V\text{'s branch} \\
\text{Define } \beta \text{ similarly for MIN}
\end{align*} \]
α-β Pruning Properties

- Pruning has **no effect** on final result
- Good move ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to $O(b^{n/2})$
 - Doubles solvable depth
 - Full search of, e.g. chess, is still hopeless!
- A simple example of **metareasoning**, here reasoning about which computations are relevant

Resource Limits

- Cannot search to leaves
- Limited search
 - Instead, search a limited portion of the tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 – decent chess program
Evaluation Functions

- Function which scores non-terminals

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- e.g. \(f_i(s) = (\text{num white queens} - \text{num black queens}) \), etc.

Function Approximation

- Problem: inefficient to learn each state's utility (or eval function) one by one

- Solution: what we learn about one state (or position) should generalize to similar states
 - Very much like supervised learning
 - If states are treated entirely independently, we can only learn on very small state spaces
Linear Value Functions

- Another option: values are linear functions of features of states (or action-state pairs)
 \[\hat{U}_\theta(s) = \sum_k \theta_k f_k(s) \]
 - Good if you can describe states well using a few features (e.g. for game playing board evaluations)

- Now we only have to learn a few weights rather than a value for each state

\[\hat{U}_\theta(s) = 0.3 + 0.05x + 0.1y \]

Recap: Model-Free Learning

- Recall MDP value updates for a given estimate of \(U \)
 - If you know the model \(T \), use Bellman update
 \[U(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} U(s')T(s, a, s') \]

- Temporal difference learning (TD)
 - Make (epsilon greedy) action choice (or follow a provided policy)
 \[\pi(s) = \arg \max_a \sum_{s'} U(s')T(s, a, s') \]
 - Update using results of the action
 \[U(s) \leftarrow (1 - \alpha)U(s) + \alpha \left(R(s) + \gamma U(s') \right) \]
Example: Tabular Value Updates

- **Example: Blackjack**
 - +1 for win, -1 for loss or bust, 0 for tie
 - Our hand shows 14, current policy says “hit”
 - Current $U(s)$ is 0.5
 - We hit, get an 8, bust (end up in $s’ = “lose”$)

- **Update**
 - Old $U(s) = 0.5$
 - Observed $R(s) = 0$
 - Old $U(s’) = -1$
 - New $U(s) = U(s) + \alpha \left[\gamma (R(s) + U(s’) – U(s)) \right]$
 - If $\alpha = 0.1$, $\gamma = 1.0$
 - New $U(s) = 0.5 + 0.1 \left[0 + -1 – 0.5 \right]$
 - $= 0.5 + 0.1 \left[-1.5\right] = 0.35$

TD Updates: Linear Values

- **Assume a linear value function:**
 \[
 \hat{U}_\theta(s) = \sum_k \theta_k f_k(s)
 \]

- **Can almost do a TD update:**
 \[
 U(s) \leftarrow U(s) + \alpha \left([R(s) + \gamma U(s’)] – U(s) \right)
 \]

 - Problem: we can’t “increment” $U(s)$ explicitly
 - Solution: update the weights of the features at that state
 \[
 \theta_k \leftarrow \theta_k + \alpha \left([R(s) + \gamma U(s’)] – U(s) \right) f_k(s)
 \]
Learning Eval Parameters with TD

- Ideally, want eval(s) to be the utility of s
- Idea: use techniques from reinforcement learning
 - Samuel's 1959 checkers system
 - Tesauro's 1992 backgammon system (TD-Gammon)
- Basic approach: temporal difference updates
 - Begin in state s
 - Choose action using limited minimax search
 - See what opponent does
 - End up in state s'
 - Do a value update of U(s) using U(s')
 - Not guaranteed to converge against an adversary, but can work in practice

Q-Learning

- With TD updates on values
 - You don't need the model to update the utility estimates
 - You still do need it to figure out what action to take!

- Q-Learning with TD updates
 - No model needed to learn or to choose actions

\[
Q_{i+1}(a, s) \leftarrow (1 - \alpha)Q_{i}(a, s) + \\
\alpha (R(s) + \gamma \max_{a'} Q_{i}(a', s'))
\]

\[
\pi(s) = \arg \max_{a} Q(a, s)
\]
TD Updates for Linear Qs

- Can use TD learning with linear Qs
 - (Actually it’s just like the perceptron!)
 - Old Q-learning update:

\[
Q(a, s) \leftarrow Q(a, s) + \alpha \left(R(s) + \gamma \max_{a'} Q(a', s') - Q(a, s) \right)
\]

- Simply update weights of features in \(Q_\theta(a,s) \)

\[
\theta_k \leftarrow \theta_k + \alpha \left(R(s) + \gamma \max_{a'} Q_\theta(a', s') - Q_\theta(a, s) \right) f_k(a, s)
\]

Coming Up

- Real-world applications
 - Large-scale machine / reinforcement learning
 - NLP: language understanding and translation
 - Vision: object and face recognition