What is NLP?

- Fundamental goal: deep understanding of broad language
- Not just string processing or keyword matching!
- End systems that we want to build:
 - Ambitious: speech recognition, machine translation, information extraction, dialog interfaces, question answering...
 - Modest: spelling correction, text categorization...

Why is Language Hard?

- Ambiguity
 - EYE DROPS OFF SHELF
 - MINERS REFUSE TO WORK AFTER DEATH
 - KILLER SENTENCED TO DIE FOR SECOND TIME IN 10 YEARS
 - LACK OF BRAINS HINDERS RESEARCH

The Big Open Problems

- Machine translation
- Information extraction
- Solid speech recognition
- Deep content understanding

Machine Translation

Atlanta, preso il killer del palazzo di Giustizia

ATLANTA - La grande paura che per 20 ore ha sconvolto Atlanta è finita. L'omicidio, il culmine di una serie di delitti che ha portato un'epidemia di delitti, è stato risolto dalla polizia, dopo aver aspettato il riso nel campo di una donna in un appartamento al primo piano della casa. Per tutto il giorno, il centro della città, sede della casa e dei telefoni, si era risvegliato per un nuovo delitto, ma la polizia ha finalmente risolto l'enigma.

- Translation systems encode:
 - Something about fluent language
 - Something about how two languages correspond
 - SOTA: for easy language pairs, better than nothing, but more an understanding aid than a replacement for human translators

Information Extraction

Atlanta, taken the killer of the palace of Justice

ATLANTA - The great fear that for 20 hours gripped Atlanta is ended. The killer, who had killed three persons to paste a new label and that a customs agent has been killed, is delivered to the police, after having tried to give up in the room of one woman in a complex of apartments; the person, suspect of the crime, was not found.

- SOTA: perhaps 70% accuracy for multi-sentence templates, 90%+ for single easy fields
Question Answering

- **Question Answering:**
 - More than search
 - Ask general comprehension questions of a document collection
 - Can be really easy:
 - "What's the capital of Wyoming?"
 - Can be harder:
 - "How many US state capitals are also their largest cities?"
 - Can be open-ended:
 - "What are the main issues in the global warming debate?"
- SOTA: Can do factoids, even when text isn’t a perfect match

Models of Language

- **Two main ways of modeling language**
 - **Language modeling:** putting a distribution \(P(s) \) over sentences \(s \)
 - Useful for modeling fluency in a noisy channel setting, like machine translation or ASR
 - Typically simple models, trained on lots of data
 - **Language analysis:** determining the structure and/or meaning behind a sentence
 - Useful for deeper processing like information extraction or question answering
 - Starting to be used for MT

The Speech Recognition Problem

- We want to predict a sentence given an acoustic sequence:
 \[s^* = \text{arg max } P(s | A) \]
- **The noisy channel approach:**
 - Build a generative model of production (encoding)
 \[P(A, s) = P(s) P(A | s) \]
 - To decode, we use Bayes’ rule to write
 \[s^* = \text{arg max } P(s | A) \]
 \[= \text{arg max } P(s) P(A | s) / P(A) \]
 \[= \text{arg max } P(s) P(A | s) \]
 - Now, we have to find a sentence maximizing this product

N-Gram Language Models

- **No loss of generality to break sentence probability down with the chain rule**
 \[P(w_1 w_2 \ldots w_n) = \prod_{i=1}^{n} P(w_i | w_{i-1} \ldots w_1) \]
 - Too many histories!
- **N-gram solution:** assume each word depends only on a short linear history
 \[P(w_1 w_2 \ldots w_n) = \prod_{i=1}^{n} P(w_i | w_{i-1} \ldots w_{i-5}) \]

Unigram Models

- **Simplest case:** unigrams
 \[P(w_1 w_2 \ldots w_n) = \prod_{i=1}^{n} P(w_i) \]
- **Generative process:** pick a word, pick another word, …
 - As a graphical model:
 - To make this a proper distribution over sentences, we have to generate a special STOP symbol last. (Why?)
- **Examples:**
 - [the, of, future, the, an, incorporated, is, the, inflation, road, dollars, quarter, in, is, more]
 - [thirtieth, of, eighty, east, hard, in, July, lawsuit]
 - [that, or, limited, the]

Bigram Models

- **Big problem with unigrams:** \(P(\text{the the the the}) \gg P(\text{like ice cream}) \)
- **Condition on last word:**
 \[P(w_1 w_2 \ldots w_n) = \prod_{i=1}^{n} P(w_i | w_{i-1}) \]
- **Any better?**
 - [these, and, be, a, not, such, as, it, is, scheduled, to, conscious, teaching]
 - [this, would, be, a, record, november]
Sparsity

- Problems with n-gram models:
 - New words appear all the time:
 - Synaptitude
 - fuzzificational
 - New bigrams: even more often
 - Trigrams or more – still worse!

- Zipf’s Law:
 - Types (words) vs. tokens (word occurrences)
 - Broadly: most word types are rare
 - Specifically:
 - Rank word types by token frequency
 - Frequency inversely proportional to rank
 - Not special to language: randomly generated character strings have this property

Smoothing

- We often want to make estimates from sparse statistics:
 \[
 P(w | \text{denied the})
 \]
 - 3 allegations
 - 2 reports
 - 1 claim
 - 1 request
 - 7 total

- Smoothing flattens spiky distributions so they generalize better

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
 - In general, this involves nested trees
 - Linguists can, and do, argue about details
 - Lots of ambiguity
 - Not the only kind of syntax...

PP Attachment

- Attachment is a Simplification

 - I cleaned the dishes from dinner
 - I cleaned the dishes with detergent
 - I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 - They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition:
 - A good pharmacist dispenses with accuracy.
 - The puppy tore up the staircase.

- Complement structures
 - The tourists objected to the guide that they couldn’t hear.
 - She knows you like the back of her hand.

- Gerund vs. participial adjective
 - Visiting relatives can be boring.
 - Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.

Human Processing

- Garden pathing:
 the man who hunts ducks out on weekends
 the cotton shirts are made from grows in Mississippi
 the old train the young
 the daughter of the king’s son loves himself

- Ambiguity maintenance
 Have the police ... eaten their supper?
 come in and look around.
 taken out and shot.

Context-Free Grammars

- A context-free grammar is a tuple <N, T, S, R>
 - N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R : the set of rules
 - Of the form X → Y₁ Y₂ ... Yk, with X, Yi ∈ N
 - Examples: S → NP VP, VP → VP CC VP
 - Also called rewrites, productions, or local trees

Example CFG

- Can just write the grammar (rules with non-terminal LHSs) and lexicon (rules with pre-terminal LHSs)

 Grammar

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT → S</td>
<td>JJ → new</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>NN → art</td>
</tr>
<tr>
<td>VP → VBP NP</td>
<td>NNS → critics</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>NNS → reviews</td>
</tr>
<tr>
<td>PP → IN NP</td>
<td>VBP → computers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT → S</td>
<td>JJ → new</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>NN → art</td>
</tr>
<tr>
<td>VP → VBP NP</td>
<td>NNS → reviews</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>NNS → computers</td>
</tr>
<tr>
<td>PP → IN NP</td>
<td>VBP → with</td>
</tr>
</tbody>
</table>

Top-Down Generation from CFGs

- A CFG generates a language
- Fix an order: apply rules to leftmost non-terminal

 ROOT
 S
 NP VP
 NNS VP
 critics VP
 critics write VP
 critics write VBP NP
 critics write NNS
 critics write reviews

 ROOT
 S
 NP VP
 NNS VP
 critics VP
 critics write VP
 critics write VBP NP
 critics write NNS
 critics write reviews

- Gives a derivation of a tree using rules of the grammar

Corpora

- A corpus is a collection of text
- Often annotated in some way
- Sometimes just lots of text
- Balanced vs. uniform corpora

- Examples
 - Newswire collections: 500M+ words
 - Brown corpus: 1M words of tagged balanced text
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French / English sentences
 - The Web: billions of words of who knows what
Treebank Sentences

((S NP-58) The move)
(CVP followed
(NP (NP a round))
(RP of
(NP (NP similar increases)
(PP by
(NP other lenders))
(PP against
(NP Arizona real estate loans))))
(S-ADV (NP-58) -)
(CVP reflecting
(NP (NP a continuing decline)
(PP-LOC in
(NP that market))))

Corpus-Based Methods

- A corpus like a treebank gives us three important tools:
 - It gives us broad coverage

```
ROOT -> S
S -> NP VP
NP -> PRO
VP -> VBD ADJP
```

Why is Language Hard?

- Scale

```
ROOT -> S
S -> NP VP
NP -> DT NN
VP -> VBD ADJP
```

Parsing as Search: Top-Down

- Top-down parsing: starts with the root and tries to generate the input

```
ROOT -> S
S -> NP VP
```

INPUT: critics write reviews

Treebank Parsing in 20 sec

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):
- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

```
ROOT -> S 1
S -> NP VP . 1
NP -> PRO 1
VP -> VBD ADJP 1
```

PCFGs and Independence

- Symbols in a PCFG define independence assumptions:
- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.

```
S -> NP VP
NP -> DT NN
```


Corpus-Based Methods

- It gives us statistical information
- All NPs
 - NP PP: 11%
 - DT NN: 6%
 - PRP: 9%
- NPs under S
 - NP PP: 9%
 - DT NN: 9%
 - PRP: 21%
- NPs under VP
 - NP PP: 23%
 - DT NN: 7%
 - PRP: 4%

This is a very different kind of subject/object asymmetry than what many linguists are interested in.

Semantic Interpretation

- Back to meaning!
 - A very basic approach to computational semantics
 - Truth-theoretic notion of semantics (Tarskian)
 - Assign a “meaning” to each word
 - Word meanings combine according to the parse structure
 - People can and do spend entire courses on this topic
 - We’ll spend about an hour!
- What’s NLP and what isn’t?
 - Designing meaning representations?
 - Computing those representations?
 - Reasoning with them?
- Supplemental reading will be on the web page.

Meaning

- "Meaning"
 - What is meaning?
 - "The computer in the corner.
 - "Bob likes Alice."
 - "I think I am a gummi bear."
 - Knowing whether a statement is true?
 - Knowing the conditions under which it’s true?
 - Being able to react appropriately to it?
 - "Who does Bob like?"
 - "Close the door."
- A distinction:
 - Linguistic (semantic) meaning
 - Speaker (pragmatic) meaning
- Today: assembling the semantic meaning of sentence from its parts

Entailment and Presupposition

- Some notions worth knowing:
 - Entailment:
 - A entails B if A being true necessarily implies B is true
 - "Twitchy is a big mouse" → "Twitchy is a mouse"
 - "Twitchy is a big mouse" → "Twitchy is big"
 - "Twitchy is a big mouse" → "Twitchy is furry"
 - Presupposition:
 - A presupposes B if A is only well-defined if B is true
 - "The computer in the corner is broken" presupposes that there is a (salient) computer in the corner

Truth-Conditional Semantics

- Linguistic expressions:
 - Bob sings
- Logical translations:
 - sings(bob)
 - Could be p_{1218(0.397)}
- Denotation:
 - [bob] = some specific person (in some context)
 - [sings(bob)] = ???
- Types on translations:
 - Bob - e (for entity)
 - sings(bob) : t (for truth-value)
Truth-Conditional Semantics

- Proper names:
 - Refer directly to some entity in the world
 - \(\text{Bob} : \text{bob} \) \(\langle \text{bob} \rangle \)

- Sentences:
 - Are either true or false (given how the world actually is)
 - \(\text{Bob sings} : \text{sings(bob)} \)

- So what about verbs (and verb phrases)?
 - \(\text{Verb} \) must combine with \(\text{Bob} \) to produce \(\text{sings(bob)} \)
 - The lambda-calculus is a notation for functions whose arguments are not yet filled.
 - \(\text{sings} : \lambda x. \text{sings}(x) \)

Compositional Semantics

- So now we have meanings for the words
- How do we know how to combine words?
- Associate a combination rule with each grammar rule:
 - \(\text{S} : \beta(\alpha) \rightarrow \alpha \text{VP} \beta \) (function application)
 - \(\text{VP} : \lambda x.\ (\alpha(x) \land \beta(x)) \rightarrow \alpha \text{ and} \ \beta \) (intersection)
- Example:
 - \(\text{S [i.x.sings(x) \land dances(x)](bob)} \)

Other Cases

- Transitive verbs:
 - \(\text{likes} : \lambda x.\lambda y. \text{likes(y,x)} \)
 - Two-place predicates of type \(e \rightarrow (e \rightarrow t) \)
 - \(\text{likes Amy} : \lambda y. \text{likes(y,Amy)} \)
 - Mostly works, but some problems
 - \(\text{Have to change our NP/VP rule.} \)
 - \(\text{Won’t work for “Amy likes everyone.”} \)
 - \(\text{This gets tricky quickly!} \)

- Quantifiers:
 - \(\forall x \text{likes(x,amy)} \)
 - Mostly works, but some problems
 - \(\text{Have to change our NP/VP rule.} \)
 - \(\text{“Everyone likes someone.”} \)
 - \(\text{This gets tricky quickly!} \)

Denotation

- What do we do with logical translations?
 - Translation language (logical form) has fewer ambiguities
 - Can check truth value against a database
 - More usefully: assert truth and modify a database
 - Questions: check whether a statement in a corpus entails the (question, answer) pair:
 - \(\text{“Bob sings and dances”} \rightarrow \text{“Who sings?” + “Bob”} \)
 - \(\text{Chain together facts and use them for comprehension} \)

Grounding

- So why does the translation \(\text{likes} : \lambda x.\lambda y. \text{likes(y,x)} \) have anything to do with actual liking?
- It doesn’t (unless the denotation model says so)
- Sometimes that’s enough: wire up bought to the appropriate entry in a database

- Meaning postulates
 - Insist, e.g \(\forall x \text{likes(y,x)} \rightarrow \text{knows(y,x)} \)
 - This gets into lexical semantics issues

- Statistical version?

Tense and Events

- In general, you don’t get far with verbs as predicates
- Better to have event variables \(e \)
 - \(\text{“Alice danced” : danced(alice)} \)
 - \(\exists e : \text{dance(e)} \land \text{agent(e,alice)} \land (\text{time(e) < now}) \)
- Event variables let you talk about non-trivial tense / aspect structures
 - \(\text{“Alice had been dancing when Bob sneezed”} \)
 - \(\exists e, e’ : \text{dance(e)} \land \text{agent(e,alice)} \land \text{sneeze(e’) } \land \text{agent(e’,bob)} \land (\text{start(e) < start(e’)} \land \text{end(e) = end(e’)}) \land (\text{time(e’) < now}) \)
Propositional Attitudes

- “Bob thinks that I am a gummi bear”
 - \(\text{thinks(bob, gummi(me))} \)
 - \(\text{Thinks(bob, "I am a gummi bear")} \)
 - \(\text{thinks(bob, ^gummi(me))} \)

- Usual solution involves intensions \(^X\) which are, roughly, the set of possible worlds (or conditions) in which \(X \) is true

- Hard to deal with computationally
 - Modeling other agents models, etc
 - Can come up in simple dialog scenarios, e.g., if you want to talk about what your bill claims you bought vs. what you actually bought

Trickier Stuff

- Non-Intersective Adjectives
 - \(\text{green ball : } \lambda x.[\text{green}(x) \land \text{ball}(x)] \)
 - \(\text{fake diamond : } \lambda x.[\text{fake}(x) \land \text{diamond}(x)] \)

- Generalized Quantifiers
 - \(\text{the : } \lambda f.[\text{unique-member}(f)] \)
 - \(\text{all : } \lambda f. \lambda g \{ \forall x. f(x) \rightarrow g(x) \} \)
 - \(\text{most?} \)
 - \(\text{Could do with more general second order predicates, too (why worse?)} \)
 - \(\text{the(cat, meows), all(cat, meows)} \)

- Generics
 - “Cats like naps”
 - “The players scored a goal”

- Pronouns (and bound anaphora)
 - “If you have a dime, put it in the meter.”

- ... the list goes on and on!

Multiple Quantifiers

Quantifier scope

- Groucho Marx celebrates quantifier order ambiguity:
 - “In this country a woman gives birth every 15 min.
 Our job is to find that woman and stop her.”

Deciding between readings

- “Bob bought a pumpkin every Halloween”
- “Bob put a pumpkin in every window”