Today

- A* Search
- Heuristic Design
- Local Search
Problem Graphs vs Search Trees

We almost always construct both on demand – and we construct as little as possible.

Each NODE in the search tree is an entire PATH in the problem graph.

Uniform Cost Problems

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location
Best-First Search

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking

- Like DFS in completeness (finite states w/ cycle checking)
Combining Best-First and UCS

- Uniform-cost orders by path cost, or backward cost \(g(n) \)
- Best-first orders by goal proximity, or forward cost \(h(n) \)

What happens with each ordering?
- \(A^* \) orders by the sum: \(f(n) = g(n) + h(n) \)

When should \(A^* \) terminate?
- Should we stop when we enqueue a goal?
- No: only stop when we dequeue a goal
Is A* Optimal?

What went wrong?
- Actual bad goal cost > estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic is *admissible* (optimistic) if:
 \[h(n) \leq h^*(n) \]
 where \(h^*(n) \) is the true cost to a nearest goal

- E.g. Euclidean distance on a map problem

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A*: Blocking

Proof:
- What can go wrong?
- We’d have to pop a suboptimal goal off the fringe queue
- Imagine a suboptimal goal G’ is on the queue
- Consider any unexpanded (fringe) node n on a shortest path to optimal G
- n will be popped before G

This proof assumed tree search! Where?

\[f(n) \leq g(G) \]
\[g(G') < g(G') \]
\[g(G') = f(G') \]
\[f(n) < f(G') \]

Optimality of A*: Contours

Consider what A* does:
- Expands nodes in increasing total f value (f-contours)
- Optimal goals have lower f value, so get expanded first

Holds for graph search as well, but we made a different assumption. What?
Consistency

- Wait, how do we know we expand in increasing f value?
- Couldn’t we pop some node \(n \), and find its child \(n' \) to have higher f value?
- YES:

 ![Graph](image)

 - What do we need to do to fix this?
 - Consistency: \(h(n) \leq c(n, a, n') + h(n') \)
 - Real cost always exceeds reduction in heuristic

UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Properties of A*

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS = BFS*</td>
<td>Y</td>
<td>Y</td>
<td>O(s b*)</td>
<td>O(b*)*</td>
</tr>
<tr>
<td>A*</td>
<td>Y</td>
<td>Y</td>
<td>O(a b^2)</td>
<td>O(b^2)</td>
</tr>
</tbody>
</table>

*Assume all costs are 1
Assume one goal, non-goals have \(h(n) = g^*(G) - a \)

Uniform-Cost

A*

Admissible Heuristics

- Most of the work is in coming up with admissible heuristics
- Good news: usually admissible heuristics are also consistent
- More good news: inadmissible heuristics are often quite effective (especially when you have no choice)
8-Puzzle I

- Number of tiles misplaced?
- Why is it admissible?
- $h(\text{start}) = \text{8}$
- This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>ID</th>
<th>112</th>
<th>6,300</th>
<th>3.6×10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Average nodes expanded when optimal path has length...

- 4 steps
- 8 steps
- 12 steps

8-Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any one direction at any time?
- Total Manhattan distance
- Why admissible?
- $h(\text{start}) = \text{3} + \text{1} + \text{2} + \ldots = \text{18}$

<table>
<thead>
<tr>
<th>ID</th>
<th>12</th>
<th>25</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

Average nodes expanded when optimal path has length...

- 4 steps
- 8 steps
- 12 steps
8-Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes?
 - What’s wrong with it?

- With A*, trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance:
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Course Scheduling

- From the university’s perspective:
 - Set of courses \(\{c_1, c_2, \ldots, c_n\} \)
 - Set of room / times \(\{r_1, r_2, \ldots, r_n\} \)
 - Each pairing \((c_k, r_m)\) has a cost \(w_{km}\)
 - What’s the best assignment of courses to rooms?

- States: list of pairings
- Actions: add a legal pairing
- Costs: cost of the new pairing

- Admissible heuristics?

- (Who can think of a cs170 answer to this problem?)

Other A* Applications

- Machine translation
- Statistical parsing
- Speech recognition
- Robot motion planning (next class)
- Routing problems (see homework!)
- Planning problems (see homework!)
- …
Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

Local Search Methods

- Queue-based algorithms keep fallback options (backtracking)
- Local search: improve what you have until you can’t make it better
- Generally much more efficient (but incomplete)
Types of Problems

- **Planning problems:**
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- **Identification problems:**
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - *Iterative improvement algorithms*

Example: N-Queens

- Start wherever, move queens to reduce conflicts
- Almost always solves large n-queens nearly instantly
- How is this different from best-first search?
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit

- Why can this be a terrible idea?
 - Complete?
 - Optimal?

- What’s good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to “temperature”
  local variables: current, a node
                  next, a node
                  T, a “temperature” controlling prob. of downward steps

  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t ← 1 to ∞ do
    T ← schedule(t)
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{-ΔE/T}
```

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{-\frac{E(x)}{kT}} \)
 - If T decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways
Beam Search

- Like greedy search, but keep K states at all times:

<table>
<thead>
<tr>
<th>Greedy Search</th>
<th>Beam Search</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
 - States: \((x_1, y_1, x_2, y_2, x_3, y_3)\)
 - Cost: sum of squared distances to closest city
Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

\[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right) \]

\[x \leftarrow x + \alpha \nabla f(x) \]

- More on this next class…