Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: any old data structure
 - Goal test: any function over states
 - Successors: any map from states to sets of states

- **Constraint satisfaction problems (CSPs):**
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints
 \[
 \forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \sum_{i,j} X_{ij} = N
 \]

Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{11, 12, 13, \ldots, 21, \ldots N N\}$
 - Constraints:
 \[
 \forall i, j \ (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots\} \\
 \forall i, j \text{ non-threatening}(Q_i, Q_j)
 \]
Example: Map-Coloring

- **Variables:** \(WA, NT, Q, NSW, V, SA, T \)
- **Domain:** \(D = \{ \text{red, green, blue} \} \)
- **Constraints:** adjacent regions must have different colors
 \[WA \neq NT \]
 \[(WA, NT) \in \{ (\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots \} \]
- **Solutions** are assignments satisfying all constraints, e.g.:
 \[\{ WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \} \]

Constraint Graphs

- **Binary CSP:** each constraint relates (at most) two variables
- **Constraint graph:** nodes are variables, arcs show constraints
- **General-purpose CSP algorithms** use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- **Variables:**

 \[F \quad T \quad U \quad W \quad R \quad O \quad X_1 \quad X_2 \quad X_3 \]

 \[+ \quad T \quad W \quad O \]

 \[F \quad O \quad U \quad R \]

- **Domains:**

 \[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

- **Constraints:**

 - \(\text{alldiff}(F, T, U, W, R, O) \)

 - \(O + O = R + 10 \cdot X_1 \)

 \[\ldots \]

Varieties of CSPs

- **Discrete Variables**

 - Finite domains size \(d \) means \(O(d^n) \) complete assignments

 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 - Infinite domains (integers, strings, etc.)

 - E.g., job scheduling, variables are start/end times for each job

 - Need a constraint language, e.g., \(\text{StartJob}_1 + 5 < \text{StartJob}_3 \)

 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**

 - E.g., start/end times for Hubble Telescope observations

 - Linear constraints solvable in polynomial time by LP methods

 (see cs170 for a bit of this theory)
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq green \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

- Many real-world problems involve real-valued variables...
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?
Backtracking Search

- Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?

- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments

- Depth-first search for CSPs with these two improvements is called backtracking search

- Backtracking search is the basic uninformed algorithm for CSPs

- Can solve n-queens for \(n \approx 25 \)

Backtracking Search

```plaintext
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns solution/failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment given CONSTRAINTS[csp] then
      add \{var = value\} to assignment
      result ← RECURSIVE-BACKTRACKING(assignment, csp)
      if result /= failure then return result
      remove \{var = value\} from assignment
  return failure
```

- What are the choice points?
Backtracking Example

Improving Backtracking

- General-purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?
Minimum Remaining Values

- **Minimum remaining values (MRV):**
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Called most constrained variable
- “Fail-fast” ordering

Degree Heuristic

- **Tie-breaker among MRV variables**
- **Degree heuristic:**
 - Choose the variable with the most constraints on remaining variables

- Why most rather than fewest constraints?
Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables
- Idea: Terminate when any variable has no legal values
Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

 - NT and SA cannot both be blue!
 - Why didn't we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent iff for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment
Arc Consistency

```
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
    local variables: queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        (X_i, X_j) ← REMOVE-FIRST(queue)
        if REMOVE-INCOSTANT-VALUES(X_i, X_j) then
            for each X_k in NEIGHBORS[X_i] do
                add (X_k, X_i) to queue
```

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- … but detecting all possible future problem is NP-hard – why?

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c\) variables out of \(n\) total
- Worst-case solution cost is \(O((n/c)(d^c))\), linear in \(n\)
 - E.g., \(n = 80, d = 2, c = 20\)
 - \(2^{80} = 4\) billion years at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4\) seconds at 10 million nodes/sec
Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
- Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

For $i = n : 2$, apply RemoveInconsistent(\text{Parent}(X_i), X_i)
For $i = 1 : n$, assign X_i consistently with \text{Parent}(X_i)

Runtime: $O(n d^2)$
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators *reassign* variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with $h(n) =$ total number of violated constraints
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = \text{number of attacks}$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio:

$$ R = \frac{\text{number of constraints}}{\text{number of variables}} $$
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice