CS 268: Lecture 3
(TCP/IP Architecture)

Kevin Lai and Ion Stoica
January 30, 2002
Paper Reviews

- state
 - goal of the paper
 - approach the paper takes to accomplish that goal.

- critique the paper by stating and justifying your opinion of the paper's
 - motivation
 - relevance
 - analyses
 - experiments
The Problem

- Before Internet
 - different packet-switching networks (e.g., ARPANET, ARPA packet radio)
 - only nodes on the same physical/link layer network could communicate
 - want to share room-size computers, storage to reduce expense
The Challenge

- Interconnect existing networks
- ... but, packet switching networks differ widely
 - different services
 - e.g., degree of reliability
 - different interfaces
 - e.g., length of the packet that can be transmitted, address format
 - different protocols
 - e.g., routing protocols
Possible solutions

- Reengineer and develop one global packet switching network standard
 - not economically feasible
 - not deployable

- Have every host implement the protocols of any network it wants to communicate with
 - Complexity/node = O(n)
 - O(n²) global complexity
Solution

- Add an extra layer: internetworking layer
 - hosts:
 - understand one network protocol
 - understand one physical/link protocol
 - gateways:
 - understand one network protocol
 - understand the physical/link protocols of the networks they gateway
 - Complexity to add a node/network: $O(1)$ with respect to number of existing nodes
Solution
Common Intermediate Representation

- Examples:
 - telnet, IP, strict HTML, I-mode cHTML

- Who ignored this:
 - US cell phone providers (pairwise roaming agreements)
 - IE HTML, Netscape HTML, etc.
 - WAP (WML same purpose as HTML, but not compatible)

 network value = \(O(n^2) \), (Metcalfe's Law)
 pairwise translation: cost = \(O(n^2) \), utility = \(O(1) \)
 CIR: cost = \(O(n) \), utility = \(O(n) \)
Challenge 1: Different Address Formats

- Options:
 - Map one address format to another. Why not?
 - Provide one common format
 • map lower level addresses to common format

- Format:
 - Initially: 8b network 16b host 24b total
 - Before Classless InterDomain Routing (CIDR):
 • 7b/24b, 14b/16b, or 21b/8b 32b total
 - After CIDR: Arbitrary division 32b total
 - NAT: 32b + 16b simultaneously active
 - IPv6: 128b total
Address Formats

- 256 networks? What were they thinking?
- Why CIDR?
- What happens if they run out before IPv6?
- Why IPv6?
- Why not variable length addresses?
Challenge 2: Different Packet Sizes

- Need to define maximum packet size
- Options:
 - Take the minimum of the maximum packets sizes over all networks
 - Implement fragmentation/reassembly
 • Flexibility to adjust packet sizes as new technologies arrive
 • IP: fragment at routers, reassemble at host
 • Why reassemble at routers?
 - Still stuck with 1500B as de facto maximum
Other Challenges

- Errors \(\rightarrow \) require **end-to-end** reliability
 - Thought to be rarely invoked, but necessary
- Different (routing) protocols \(\rightarrow \) coordinate these protocols
- Accounting
 - Did not envision script kiddies
- Quality of Service
 - Not addressed
Transmission Control Program

- Original TCP/IP (Cerf & Kahn)
 - no separation between transport (TCP) and network (IP) layers
 - one common header (vestige?)
 - flow control, but not congestion control (why not?)
 - fragmentation handled by TCP

- Today’s TCP/IP
 - separate transport (TCP) and network (IP) layer (why?)
 - split the common header in: TCP and UDP headers
 - fragmentation reassembly done by IP
 - congestion control
Devil’s Advocate

- Who cares about resource sharing?
 - 1974: cycles, storage, bandwidth expensive, people cheap
 - 2002: resources cheap, people expensive
 - 1974: Share computer resources
 - 2002: Communicate with people, access documents, buy, sell

- Does it still make sense to make processes the endpoint?

- Where do people and organizations fit into the ISO layering model?
Back to the big picture
Goals (Clark’88)

0. **Connect existing networks**
 - initially ARPANET and ARPA packet radio network

1. **Survivability**
 - ensure communication service even in the presence of network and router failures

2. **Support multiple types of services**

3. **Must accommodate a variety of networks**

4. Allow distributed management

5. Allow host attachment with a low level of effort

6. Be cost effective

7. Allow resource accountability
1. Survivability

- continue to operate even in the presence of network failures (e.g., link and router failures)
 - failures (excepting network partition) should be transparent to endpoints
- maintain state only at end-points (fate-sharing)
 - no need to replicate and restore router state
 - disadvantages?
- Internet: stateless network architecture
 - no per-flow state, still have state in address allocation, DNS
2. Types of Services

- Add UDP to TCP to better support other types of applications
 - e.g., “real-time” applications
- Probably main reason for separating TCP and IP
- Provide datagram abstraction: lower common denominator on which other services can be built
 - service differentiation considered (ToS header bits)
 - was not widely deployed (why?)
Application Assumptions

- Who made them:
 - Telephone network: voice (web, video?)
 - Cable: broadcast (2-way?)
 - X.25: remote terminal access (file transfer?)
 - BBS: centralized meeting place (web, p2p?)
 - NAT: client/server model (p2p, IM, IP Telephony?)

- Who didn't: Internet
 - Caveat: best-effort, unicast, fixed location (real-time, multicast, mobility?)

- Allows development of unforseen applications:
 - Web, p2p, distributed gaming

- Sometimes too general:
 - Interdomain, multi-source multicast scales poorly
 - Single source multicast scales better [Holbrook99]
3. Variety of Networks

- Very successful
 - because the minimalist service; it requires from underlying network only to deliver a packet with a “reasonable” probability of success

- ...does not require:
 - reliability, in-order delivery, single delivery, QoS guarantees

- The mantra: IP over everything
 - Then: ARPANET, X.25, DARPA satellite network..
 - Now: ATM, SONET, WDM, PPP, USB, 802.11b, GSM, GPRS, DSL, cable modems, power lines
Internet Architecture

- Packet-switched datagram network
- IP is the glue
- Hourglass architecture
 - all hosts and routers run IP
- Common Intermediate Representation

```
TCP  UDP

IP

Satellite

Ethernet  ATM
```
Other Goals

- Allow distributed management
 - each network can be managed by a different organization
 - different organizations need to interact only at the boundaries
 - doesn’t work so well for routing, accounting

- Cost effective
 - sources of inefficiency
 - header overhead
 - retransmissions
 - routing
 - …but routers relatively simple to implement (especially software side)
Other Goals (Cont)

- Low cost of attaching a new host
 - not a strong point → higher than other architecture because the intelligence is in hosts (e.g., telephone vs. computer)
 - Moore’s law made this moot point, both <$100
 - bad implementations or malicious users can produce considerably harm (remember fate-sharing?)
 - DDoS possibly biggest threat to Internet

- Accountability
 - very little so far
What About the Future?

- Datagram not the best abstraction for:
 - resource management, accountability, QoS
- A new abstraction: flow?
- Routers require to maintain per-flow state (what is the main problem with this raised by Clark?)
 - state management
- Solution
 - soft-state: end-hosts responsible to maintain the state
Summary: Minimalist Approach

- **Dumb network**
 - IP provide minimal functionalities to support connectivity
 - addressing, forwarding, routing

- **Smart end system**
 - transport layer or app does more sophisticated functionalities
 - flow control, error control, congestion control

- **Advantages**
 - accommodate heterogeneous technologies
 - support diverse applications (telnet, ftp, Web, X windows)
 - decentralized network administration

- **Disadvantages**
 - poor realtime performance
 - poor accountability