CS 268: Ad Hoc Routing

Kevin Lai
Feb 20, 2002
Ad Hoc Motivation

- Internet goal: decentralized control
 - someone still has to deploy routers and set routes

- Ad Hoc routing
 - every node is a router
 - better wireless coverage
 - better fault tolerance (e.g. node bombed, stepped on, exhausted power)
 - no configuration (e.g. temporary association)
 - dedicated router costs money
Routing

- DSDV: hop-by-hop distance vector
- TORA: Temporally-Ordered Routing Algorithm
- DSR: Dynamic Source Routing
- AODV: Ad Hoc On-Demand Distance Vector
DSDV

- hop-by-hop distance vector
- Routing table contains entries for every other reachable node (!)
- Nodes pass their routing tables to neighbors periodically
- Routing tables are updated using standard distance vector algorithm
- Old routes are ignored using sequence numbers
- $O(n)$ routing state / node, $O(nk)$ communication size / node / period
 - $k =$ average node degree
TORA

- Temporally-Ordered Routing Algorithm
- Interested in finding multiple routes from S→D
- Find routes on demand
- Flood query to find destination
- Flood query response to form multiple routes
- O(m) routing state / node, O(nk) communication / node / route update
 - m = nodes communicated with, worst case O(n)
DSR

- Dynamic Source Routing
- Packet headers contain entire route
- Flood query to find destination
- Intermediate nodes don’t have to maintain routing state
 - nodes listen for and cache queries, responses as optimization
 - nodes gratuitously sends response packets to shorten paths when they hear packets with sub-optimal routes
- Some kind of retransmission?
- $O(m)$ routing state / nodes, $O(nk)$ communication / node / route update
 - much smaller constant than other protocols
- $O(n^{1/k})$ space required in header
AODV

- Ad Hoc On-Demand Distance Vector
- Flood query to find destination
- Reply is sent directly back to source
- Intermediate nodes listen for reply to set up routing state
- State is refreshed periodically
- \(O(m)\) routing state / node, \(O(nk)\) communication / node / route update
Results

- Avoid synchronization in timers
- TORA does not scale to 50 nodes at all
 - suffers control traffic congestion collapse
- DSDV fails to deliver packets when movement is frequent
 - only maintains one route/destination
- AODV has high routing overhead when movement is frequent
 - combination of DSDV maintenance of state + flooding of DSR
- DSR does well compared to others
 - designed by authors → not surprising
 - [LJC+00] shows congestion collapse beyond 300 nodes
Related Work

- more scalable routing [LJC+00]
 - separate addressing from naming
 - assume everyone has GPS
 - do Cartesian routing
 - separate scalable, efficient, fault tolerant service to map from names to addresses
- how to deal with selfish users? [MGL+00]
 - listen to neighbors to make sure they are forwarding
 - convey black list information back to source
 - route around selfish nodes
- how to prevent overload of nodes:
 - bandwidth exhaustion [LBC+01]
 - power exhaustion [CJB+01]
Conclusions

- proliferation of wireless network interfaces provide ready market
- ad hoc provides less configuration, more fault tolerance, better coverage, lower cost
- many interesting and unsolved problems