EE 40

11/14 – Discussion – Semiconductor Physics

- Silicon (Intrinsic):
 - Bond Model – ok + increasing temperature
 - Electrons, holes

- Doping (Conductive):
 - n-type – majority carriers are electrons
 - p-type – majority carriers are holes

- Band Diagrams
 - Conduction band, valence band, bandgap
 - Conductors – $E_c + E_v$ overlap
 - Insulators – large bandgap ~ 8 eV
 - Semiconductors – small bandgap ~ 1 eV

- Fermi Level/Energy:
 - Fermi function – Probability function of finding electrons at a specified energy level
 - Fermi level – Energy level at which the probability of finding an electron is 1/2. So, when $E = E_f$, $f(E) = 1/2$ where $f(E)$ is Fermi function.

- Fermi Level + Band Diagram:
 - Is E_f closer to E_c or E_v for n-type silicon?
 - Hint: There are more electrons in conduction band in n-type silicon.
 - Answer: E_f is closer to E_c for n-type Si.
 - E_f is closer to E_v for p-type Si.

- Drawing Band Diagrams for different dopants:
 - Light-doped with As
 - Heavy-doped with As
 - Light-doped with B
 - Heavy-doped with B
PN Junctions
- p-type Si placed next to n-type Si.

- What do the Band Diagrams look like?

- What does the above figure tell us about:
 Due to
 1. Currents - Types of currents
 2. Electric Fields
 3. Potential

Currents - Drift & Diffusion
- Drift - caused by E-field
 - holes move in the direction of E-field
 - electrons move in the direction opposite of E-field
 - E-field always points from high potential (+ charges) to low potential (- charges)
- Diffusion - caused by concentration gradients
 - particles like to move from areas of high concentration to those of low concentration

J_p → current flow associated with hole movement is in the same direction as hole movement.

J_{in} → current flow associated with electron movement is in the opposite direction as electron movement.
Electric Fields:
- Caused by the depletion region
- Depletion Region:
 - Assume the region near the interface is completely depleted of mobile carriers.
 - So: no holes or electrons near the junction.

- Which direction does the E-field point?
 - Hint: from positive to negative.

Band Diagrams Revisited:
- Electrons travel towards lower energy levels
- Holes travel towards higher energy levels

- Draw the drift + diffusion components for holes + electrons.

So Far \(V_A \), the applied bias, was 0 V.

What happens when you apply a bias, i.e. when \(V_A \neq 0 \)?
$V_A > 0$:
- Applying positive potential on the p-side.
- Applied E-field is against the built-in E-field.

E_{F_0}

E_{F_1}

E_C

E_V

E_{diff}

E_{drift}

$I_{n,diff}$

$I_{p,drift}$

$I_{p,diff}$

E-field decreases

Net current flow — large

$V_A < 0$:
- Applying positive potential on the n-side.
- Applied E-field is in the same direction as the built-in E-field.

E_{F_0}

E_{F_1}

E_C

E_V

E_{diff}

E_{drift}

$I_{n,drift}$

$I_{p,diff}$

$I_{p,drift}$

E-field increases

Net current flow — Small

Even though E-field increases, the drift component of the total current does not increase. Why?
- Hint: Drift, in a PN Junction, is associated with minority carriers. Because there are few of them, the current related to them is small.