RECURSIVE DRAWING

Toby Shachman created this amazing spatial programming language called “Recursive Drawing” that allows you to create drawings (even recursive ones) without typing a line of code. It’s a great example of a next-generation interface…

recursivedrawing.com

How the Computer Works … n!

- Factorial(n) = n!
 Inductive definition:
 - n! = 1, n = 0
 - n! = n * (n-1)!, n > 0
- Let’s act it out…
 - “contractor” model
 - 5!

<table>
<thead>
<tr>
<th>n</th>
<th>n!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
</tbody>
</table>
Order of growth of # of calls of n!

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Source: FallingFifth.com

PIE-EATING CONTEST

I can eat more pies than you. I will eat 6!

There is no way you will eat 720 pies.

Inductive definition:
- \(\text{fib}(n) = n, \quad n < 2 \)
- \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2), \quad n > 1 \)

Let's act it out...
- "contractor" model
- \(\text{fib}(5) \)

<table>
<thead>
<tr>
<th>n</th>
<th>fib(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Let's now: trace... (gif from Ybungalobill@wikimedia)
Order of growth of # of calls of fib(n)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project. (Wikipedia)

Counting Change (thanks to BH)

- Given coins \{50, 25, 10, 5, 1\} how many ways are there of making change?

```
+Count Change amount Using coins +
if amount < 0 or empty? coins report 0
if amount = 0 report 1
report Count Change amount - item 1 of coins Using coins +
```

- 5
 - 2 (N, 5P)
- 10
 - 4 (D, 2N, N5P, 10P)
- 15
 - 6 (DN, D5P, 3N, 2N5P, 1N10P, 15P)
- 100?
Call Tree for “Count Change 10 (10 5 1)”

“I understood Count Change”

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree
Summary

- It’s important to understand the machine model.
- It’s often the cleanest, simplest way to solve many problems.
 - Esp those recursive in nature!
- Recursion is a very powerful idea, often separates good from great (you’re great!)

Menger Cube by Dan Garcia