Foundations of Computer Graphics (Fall 2012)
CS 184, Lecture 10: Curves 2
http://inst.eecs.berkeley.edu/~cs184

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

- (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
- E.g. quadratic Bezier curve $F(u)$
 - Define auxiliary function $f(u_1,u_2)$ [number of args = degree]
 - Points on curve simply have $u_1 = u_2$ so that $F(u) = f(u,u)$
 - And we can label control points and deCasteljau points not on curve with appropriate values of (u_1,u_2)

 $$f(0,1) = f(1,0)$$
 $$f(0,0) = F(0)$$
 $$f(1,1) = F(1)$$

- Geometric interpretation: Quadratic

Geometric interpretation: Cubic Bezier Curve

Polar Forms: Cubic Bezier Curve
Geometric Interpretation: Cubic

Why Polar Forms?

- Simple mnemonic: which points to interpolate and how in deCasteljau algorithm
- Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively
- Generalizes to arbitrary spline curves (just label control points correctly instead of 00 01 11 for Bezier)
- Easy for many analyses (beyond scope of course)

Subdividing Bezier Curves

- Drawing: Subdivide into halves \((u = \frac{1}{2}) \) Demo: hw3
 - Recursively draw each piece
 - At some tolerance, draw control polygon
 - Trivial for Bezier curves (from deCasteljau algorithm); hence widely used for drawing

- Why specific labels/ control points on left/right?
 - How do they follow from deCasteljau?

Geometrically

- Subdivision in deCasteljau diagram

 - Left part of Bezier curve \((000, 00u, 0uu, uuu)\)
 - Always left edge of deCasteljau pyramid
 - Right part of Bezier curve \((uuu, 1uu, 11u, 111)\)
 - Always right edge of deCasteljau pyramid

 - These (interior) points don’t appear in subdivided curves at all
Summary for HW 3 (with demo)

- Bezier2 (Bezier discussed last time)
- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right

DeCasteljau: Recursive Subdivision

Input: Control points \(C_i \) with \(0 \leq i \leq n \) where \(n \) is the degree.
Output: \(L_0, R_0 \) for left and right control points in recursion.

```plaintext
1 for (level = n ; level > 0 ; level -- ) {
  2   if (level == n) { // Initial control points
  3       for (i = 0 ; i < level ; i++)
  4           p^(i,0) = C_i ; continue ;
  5      }
  6      p^(i,0) = \frac{1}{2} \times (p^(i,0-1) + p^(i+1,0-1)) ;
  7      for (i = 0 ; i < level ; i++)
  8          L_i = p_i ;
  9          R_i = p_i ;
}
```

- DeCasteljau (from last lecture) for midpoint
- Followed by recursive calls using left, right parts

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves

- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier: Disadvantages

- Single piece, no local control (move a control point, whole curve changes) [Demo of HW 3]
- Complex shapes: can be very high degree, difficult
- In practice, combine many Bezier curve segments
 - But only position continuous at join since Bezier curves interpolate end-points (which match at segment boundaries)
 - Unpleasant derivative (slope) discontinuities at end-points
 - Can you see why this is an issue?

B-Splines

- Cubic B-splines have \(C^2 \) continuity, local control
- 4 segments / control point, 4 control points/segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS)

Polar Forms: Cubic Bspline Curve

- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
- Advantage of polar forms: easy to generalize

Uniform knot vector:

```
-2, -1, 0, 1, 2, 3
```

Labels correspond to this
deCasteljau: Cubic B-Splines

- Easy to generalize using polar-form labels
- Impossible remember without

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-2 -1 0 1 2 3
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-2 -1 0 1 2 3
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-2 -1 0 1 2 3
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
(1-u)/3 \quad (2+u)/3 \quad (2-u)/3 \quad (1+u)/3 \quad u/3
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
0 u u u 1 u u
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\]

Explicit Formula (derive as exercise)

\[
F(u) = [w^2 u^2]M
\]

\[
M = \frac{1}{6} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & -4 & 1 & 0
\end{bmatrix}
\]

Summary of HW 3

- BSpline Demo hw3
- Arbitrary number of control points / segments
 - Do nothing till 4 control points (see demo)
 - Number of segments = # cpts – 3
- Segment A will have control pts A,A+1,A+2,A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
- Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?