Science is the knowledge of consequences, and dependence of one fact upon another.

Thomas Hobbes
(1588-1679)
Review: Database Design

- **Requirements Analysis**
 - user needs; what must database do?
- **Conceptual Design**
 - high level descr (often done w/ER model)
- **Logical Design**
 - translate ER into DBMS data model
- **Schema Refinement**
 - consistency, normalization
- **Physical Design** - indexes, disk layout
- **Security Design** - who accesses what
The Evils of Redundancy

- **Redundancy:** root of several problems with relational schemas:
 - redundant storage, *insert/delete/update anomalies*

- **Functional dependencies:**
 - *integrity constraints* that can identify redundancy and suggest refinements.

- **Main refinement technique:** *decomposition*
 - replacing ABCD with, say, AB and BCD, or ACD and ABD.

- **Decomposition should be used judiciously:**
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?
A **functional dependency** \(X \rightarrow Y\) holds over relation schema \(R\) if, for every allowable instance \(r\) of \(R\):

\[
t1 \in r, \ t2 \in r, \ \pi_X(t1) = \pi_X(t2) \implies \pi_Y(t1) = \pi_Y(t2)
\]

(where \(t1\) and \(t2\) are tuples; \(X\) and \(Y\) are sets of attributes)

Explanation:
- \(X \rightarrow Y\) means:
 - If for 2 tuples \(X\) is the same, then \(Y\) must also be the same.

Read “\(\rightarrow\)” as “determines”

CAUTION: The opposite is not true.
FD’s Continued

• An FD is a statement about all allowable relations.
 – Identified based on semantics, NOT instances
 – Given an instance of R, we can disprove a FD, but we cannot verify the validity of a FD.

• Question: Are FDs related to keys?
• If “K → all attributes of R” then K is a superkey for R
 (does not require K to be minimal.)
• FDs are a generalization of keys.
Consider relation obtained from Hourly_Emps:

Hourly_Emps (ssn, name, lot, rating, wage_per_hr, hrs_per_wk)

We sometimes denote a relation schema by listing the attributes: e.g., SNLRWH

This is really the set of attributes \{S,N,L,R,W,H\}.

What are some FDs on Hourly_Emps?

- \textit{ssn} is the key: \(S \rightarrow SNLRWH \)
- \textit{rating} determines \textit{wage_per_hr}: \(R \rightarrow W \)
- \textit{lot} determines \textit{lot}: \(L \rightarrow L \) ("trivial" dependency)
Problems Due to $R \rightarrow W$

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Update anomaly**: Should we be allowed to modify W in only the 1st tuple of SNLRWH?

- **Insertion anomaly**: What if we want to insert an employee and don’t know the hourly wage for his or her rating? (or we get it wrong?)

- **Deletion anomaly**: If we delete all employees with rating 5, we lose the information about the wage for rating 5!
Detecting Reduncancy

Q: Why was R → W problematic, but S → W not?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
Decomposing a Relation

- Redundancy can be removed by “chopping” the relation into pieces (vertically!)
- FD’s are used to drive this process.

$R \rightarrow W$ is causing the problems, so decompose $SNLRWH$ into what relations?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

$Wages$

Hourly_Emps2
Refining an ER Diagram

1st diagram becomes:
Workers(S,N,L,D,Si)
Departments(D,M,B)
- Lots associated with workers.

Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L \)

Redundancy; fixed by:
Workers2(S,N,D,Si)
Dept_Lots(D,L)
Departments(D,M,B)

Can fine-tune this:
Workers2(S,N,D,Si)
Departments(D,M,B,L)
Reasoning About FDs

• Given some FDs, we can usually infer additional FDs:

\[\text{title} \rightarrow \text{studio, star} \] implies \[\text{title} \rightarrow \text{studio} \text{ and } \text{title} \rightarrow \text{star} \]

\[\text{title} \rightarrow \text{studio} \text{ and } \text{title} \rightarrow \text{star} \] implies \[\text{title} \rightarrow \text{studio, star} \]

\[\text{title} \rightarrow \text{studio, studio} \rightarrow \text{star} \] implies \[\text{title} \rightarrow \text{star} \]

But,

\[\text{title, star} \rightarrow \text{studio} \] does NOT necessarily imply that

\[\text{title} \rightarrow \text{studio} \text{ or that } \text{star} \rightarrow \text{studio} \]

• An FD \(f \) is **implied by** a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.

• \(F^+ = \text{closure of } F \) is the set of all FDs that are implied by \(F \). (includes “trivial dependencies”)

Rules of Inference

- **Armstrong’s Axioms** (*X, Y, Z are sets of attributes)*:
 - *Reflexivity*: If *X* ⊇ *Y*, then *X* → *Y*
 - *Augmentation*: If *X* → *Y*, then *XZ* → *YZ* for any *Z*
 - *Transitivity*: If *X* → *Y* and *Y* → *Z*, then *X* → *Z*

- These are *sound* and *complete* inference rules for FDs!
 - i.e., using AA you can compute all the FDs in F+ and only these FDs.

- **Some additional rules** (that follow from AA):
 - *Union*: If *X* → *Y* and *X* → *Z*, then *X* → *YZ*
 - *Decomposition*: If *X* → *YZ*, then *X* → *Y* and *X* → *Z*
Example

- **Contracts** *(cid, sid, jid, did, pid, qty, value)*, and:
 - C is the key: \(C \rightarrow CSJDPQV \)
 - Proj purchases each part using single contract: \(JP \rightarrow C \)
 - Dept purchases at most 1 part from a supplier: \(SD \rightarrow P \)

- **Problem:** Prove that SDJ is a key for Contracts

- \(JP \rightarrow C, \ C \rightarrow CSJDPQV \) imply \(JP \rightarrow CSJDPQV \) (by transitivity) (shows that JP is a key)

- \(SD \rightarrow P \) implies \(SDJ \rightarrow JP \) (by augmentation)

- \(SDJ \rightarrow JP, \ JP \rightarrow CSJDPQV \) imply \(SDJ \rightarrow CSJDPQV \) (by transitivity) thus SDJ is a key.

Q: can you now infer that \(SD \rightarrow CSDPQV \) (i.e., drop J on both sides)?

No! FD inference is not like arithmetic multiplication.
• Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)

• Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 – Compute *attribute closure* of X (denoted X^+) wrt F.
 $X^+ = \text{Set of all attributes } A \text{ such that } X \rightarrow A \text{ is in } F^+$
 • $X^+ := X$
 • Repeat until no change: if there is an FD $U \rightarrow V$ in F such that U is in X^+,
 then add V to X^+
 – Check if Y is in X^+
 – Approach can also be used to find the keys of a relation.
 • If all attributes of R are in the closure of X then X is a superkey for R.
 • Q: How to check if X is a “candidate key”?
Attribute Closure (example)

- \(R = \{A, B, C, D, E\} \)
- \(F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \} \)

- **Is \(B \rightarrow E \) in \(F^+ \)?**
 \[
 B^+ = B \\
 B^+ = BCD \\
 B^+ = BCDA \\
 B^+ = BCDAE \quad \text{... Yes! and B is a key for R too!}
 \]

- **Is \(D \) a key for \(R \)?**
 \[
 D^+ = D \\
 D^+ = DE \\
 D^+ = DEC \quad \text{... Nope!}
 \]

- **Is \(AD \) a key for \(R \)?**
 \[
 AD^+ = AD \\
 AD^+ = ABD \quad \text{and B is a key, so Yes!}
 \]

- **Is \(AD \) a candidate key for \(R \)?**
 \[
 A^+ = A, \quad D^+ = DEC \\
 \text{... A,D not keys, so Yes!}
 \]

- **Is \(ADE \) a candidate key for \(R \)?**
 \[
 \text{... No! AD is a key, so ADE is a superkey, but not a cand. key}
 \]
Next Class...

- Normal forms and normalization
- Table decompositions