Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus

Normal Forms
- Review FDs, Armstrong’s Axioms and Attr. Closures!
- Q1: is any refinement needed?!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A → B: If A is not a key, then several tuples could have the same A value, and if so, they’ll all have the same B value!
- 1st Normal Form — all attributes are atomic
 - i.e. the relational model
- 1st 2nd (of historical interest) 3rd Boyce-Codd…

Boyce-Codd Normal Form (BCNF)
- Reln R with FDs F is in BCNF if, for all X → A in F*
 - A ∈ X (called a trivial FD), or
 - X is a superkey for R.
- In other words: “R is in BCNF if the only non-trivial FDs over R are key constraints.”
- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know FD X → A holds this example relation:
 - Can you guess the value of the missing attribute?
 - Yes, so relation is not in BCNF

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>y1</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>y2</td>
<td>?</td>
</tr>
</tbody>
</table>

Example (same as before)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

SNLRWH has FDs S → SNLRWH and R → W

Q: Is this relation in BCNF?
No, The second FD causes a violation; W values repeatedly associated with R values.

Decomposition of a Relation Schema
- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes A1, ..., An. A decomposition of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one of the new relations.

Decomposing a Relation
- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Hourly_Emps

Hourly_Emps2

Q: Are both of these relations are now in BCNF?
• Decompositions should be used only when needed.
 – Q: potential problems of decomposition?
Problems with Decompositions

- There are three potential problems to consider:
 1) May be impossible to reconstruct the original relation! (Lossy Decomposition)
 - Fortunately, not in the SNLRWH example.
 2) Dependency checking may require joins (not Dependency Preserving)
 - Fortunately, not in the SNLRWH example.
 3) Some queries become more expensive.
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy. (Well, not usually #1)

Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Atishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Lossy Decomposition (example)

\[
\begin{array}{lll}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\end{array}
\begin{array}{lll}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\end{array}
\]

\[A \rightarrow B; \; C \rightarrow B\]

More on Lossless Decomposition

- The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:
 \[X \cap Y \rightarrow X, \text{ or } Y\]

 in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.

- Useful result: If \(W \rightarrow Z\) holds over R and \(W \cap Z\) is empty, then decomposition of R into R-Z and WZ is loss-less.

Lossless Join Decompositions

\[\pi_X(r) \rightarrow \pi_Y(r) = r\]

- It is always true that \(r \subseteq \pi_X(r) \triangleright \pi_Y(r)\)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.

- Definition extended to decomposition into 3 or more relations in a straightforward way.

- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)

Lossless Decomposition (example)

\[
\begin{array}{lll}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\end{array}
\begin{array}{lll}
A & C & B \\
1 & 3 & 2 \\
4 & 6 & 5 \\
7 & 8 & 2 \\
\end{array}
\]

\[A \rightarrow B; \; C \rightarrow B\]

\[
\begin{array}{lll}
A & C & B \\
1 & 3 & 2 \\
4 & 6 & 5 \\
7 & 8 & 2 \\
\end{array}
\begin{array}{lll}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 2 \\
\end{array}
\]

But, now we can’t check \(A \rightarrow B\) without doing a join!
Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we
 enforce the FDs that hold individually on X, on Y
 and on Z, then all FDs that were given to hold
 on R must also hold. (Avoids Problem #2 on
 our list.)
 - Why do we care??

- Projection of set of FDs F:
 - If R is decomposed into X and Y the projection of F
 on X (denoted F_X) is the set of FDs U → V in F^+ (closure of F, not just F)
 such that all of the attributes U, V are in X. (same holds
 for Y of course)

Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates
 BCNF, decompose R into R - Y and XY (guaranteed
to be loss-less).
 - Repeated application of this idea will give us a
 collection of relations that are in BCNF; lossless join decomposition,
 and guaranteed to terminate.
 - e.g., CSJDQV, key C, JP → C, SD → P, J → S
 - [contractid, supplierid, projectid, deptid, partid, qty, value]
 - To deal with SD → P, decompose into SDP, CSDQV.
 - To deal with J → S, decompose CSJDQV into JS and
 CJDQV
 - So we end up with: SDP, JS, and CJDQV
 - Note: several dependencies may cause violation of
 BCNF. The order in which we ‘deal with” them
 could lead to very different sets of relations!

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all X → A in F^+
 A ⊆ X (called a trivial FD), or
 X is a superkey of R, or
 A is part of some candidate key (not superkey!) for R.
 (sometimes stated as "A is prime")

- Minimality of a key is crucial in third condition above!
 - If R is in BCNF, obviously in 3NF.
 - If R is in 3NF, some redundancy is possible. It is a
 compromise, used when BCNF not achievable (e.g., no
 “good” decom, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R
 into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by X → A, one of the following holds:
 - X is a subset of some key K (‘partial dependency”)
 - We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SB and S → C
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of Fds X → Y →Z → A
 - So we can’t associate an X value with a K value unless we also associate an A
 value with an X value (different K’s, same X implies same A!)
 - problem with initial SNLRWH example.
 - But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: “C” is for credit card here), S → C, C → S is in 3NF (why?)
 - Even so, for each reservation of sailor S, same (S, C) pair is stored.
 - Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues
 in your application code!
An Aside: Second Normal Form

- Like 3NF, but allows transitive dependencies:
 - Reln R with FDs F is in 2NF if, for all \(X \rightarrow A \) in \(F^+ \)

 \(A \in X \) (called a trivial FD), or

 \(X \) is a superkey of R, or

 \(X \) is not part of any candidate key for R.
 (i.e. "\(X \) is not prime")
 - There’s no reason to use this in practice
 - And we won’t expect you to remember it

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If \(X \rightarrow Y \) is not preserved, add relation \(XY \).
 Problem is that \(XY \) may violate 3NF! e.g., consider the addition of CJP to "preserve’ JP \(\rightarrow C \). What if we also have \(J \rightarrow C \)?
 - Refinement: Instead of the given set of FDs \(F \), use a minimal cover for \(F \).

Minimal Cover for a Set of FDs

- **Minimal cover** \(G \) for a set of FDs \(F \):
 - Closure of \(F = \) closure of \(G \).
 - Right hand side of each FD in \(G \) is a single attribute.
 - If we modify \(G \) by deleting an FD or by deleting attributes from an FD in \(G \), the closure changes.
 - Intuitively, every FD in \(G \) is needed, and "as small as possible" in order to get the same closure as \(F \).
- e.g., \(A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG \) has the following minimal cover:
 - \(A \rightarrow B, AC \rightarrow E, EF \rightarrow G \) and \(EF \rightarrow H \)
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book, p. 627)

Summary of Schema Refinement

- **BCNF**: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- **Not in BCNF?** Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- **Lossless-join, dependency preserving decomposition into BCNF impossible?** Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- **Note:** even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)