Machine Learning

- Up till now: how to reason or make decisions using a model
- Machine learning: how to select a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Classification

- Data:
 - Inputs x, class labels y
 - We imagine that x is something that has a lot of structure, like an image or document
 - In the basic case, y is a simple N-way choice
- Basic Setup:
 - Training data: D = bunch of <x,y> pairs
 - Feature extractors: functions f_i which provide attributes of an example x
 - Test data: more x’s, we must predict y’s
 - During development, we actually know the y’s, so we can check how well we’re doing, but when we deploy the system, we don’t

Bayes Nets for Classification

- One method of classification:
 - Features are values for observed variables
 - Y is a query variable
 - Use probabilistic inference to compute most likely Y
 \[y = \arg\max_y P(y|f_1 \ldots f_n); \]
 - You already know how to do this inference
Simple Classification

- Simple example: two binary features
 - This is a naïve Bayes model

\[P(m|s, f) \]
Direct estimate

\[P(m|s, f) = \frac{P(s, f|m)P(m)}{P(s, f)} \]
Bayes estimate (no assumptions)

\[P(m|s, f) = \frac{P(s|m)P(f|m)P(m)}{P(s, f)} \]
Conditional independence

\[\begin{align*}
 & P(m, s, f) = P(s|m)P(f|m)P(m|s, f) \\
 & P(m, s, f) = P(s|m)P(f|m)P(m|s, f) \\
 & P(m, s, f) = P(s|m)P(f|m)P(m|s, f)
\end{align*} \]

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence
 \[P(C, e_1 \ldots e_n) = \prod_i P(c_i) \prod_i P(e_i|c_i) \prod_i P(c_i) \]
 - Step 2: get probability of evidence
 \[P(e_1 \ldots e_n) \]
 - Step 3: renormalize
 \[P(C|e_1 \ldots e_n) \]

General Naïve Bayes

- A general naïve Bayes model:

\[P(C, E_1, \ldots, E_n) = P(C) \prod_i P(E_i|C) \]

- We only specify how each feature depends on the class
- Total number of parameters is linear in \(n \)

A Digit Recognizer

- Input: pixel grids

- Output: a digit 0-9

Naïve Bayes for Digits

- Simple version:
 - One feature \(F_{ij} \) for each grid position \(<i,j>\)
 - Feature values are on / off based on whether intensity is more or less than 0.5
 - Input looks like:
 \[\text{1:} \quad F_{20} = 0, \quad F_{14} = 0, \quad F_{15} = 1, \quad F_{5} = 0, \quad F_{15,15} = 0 \]

- Naïve Bayes model:

\[P(C, F_0, \ldots, F_{15,15}) = P(C) \prod_j P(F_{ij}|C) \]

- What do we need to learn?
Examples: CPTs

\[P(C) \]

\[
P(F_{3,1} = \text{on}(C)) \quad P(F_{3,5} = \text{on}(C))
\]

	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Parameter Estimation

- Estimating the distribution of a random variable \(X \) or \(X|Y \)
- **Empirically:** use training data
 - For each value \(x \), look at the **empirical rate** of that value:
 \[
P(x) = \frac{\text{count}(x)}{\text{total samples}}
\]
 - This estimate maximizes the **likelihood of the data**
 \[
 \mathcal{L}(x, \theta) = \prod_{i} f_{\theta}(x_i)
 \]
 - **Elicitation:** ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

A Spam Filter

- **Naïve Bayes spam filter**
- **Data:**
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets
- **Classifiers**
 - Learn on the training set
 - (Tune it on a held-out set)
 - Test it on new emails

Naïve Bayes for Text

- **Naïve Bayes:**
 - Predict unknown cause (spam vs. ham)
 - Independent evidence from observed variables (e.g. the words)
- **Generative model**
 - Tied distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution
 - In a bag-of-words model
 - Each position is identically distributed
 - All share the same distributions
 - Why make this assumption?
 *Minor detail: technically we’re conditioning on the length of the document here

Example: Spam Filtering

- **Model:**
 \[
P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i | C_i)
\]
- **What are the parameters?**
 - \(P(C) \)
 - \(P(W | \text{spam}) \)
 - \(P(W | \text{ham}) \)

- **Where do these tables come from?**

Spam Example

- \(P(\text{spam} | w) = 98.9 \)

| Word | \(P(w | \text{spam}) \) | \(P(w | \text{ham}) \) | Tot Spam | Tot Ham |
|--------|------------------|------------------|----------|--------|
| prior | 0.33333 | 0.66666 | -1.1 | -0.4 |

Word at position \(i \) is \(P(w) \) word in the dictionary.
Example: Overfitting

\[P(\text{features}, C = 2) \quad P(\text{features}, C = 3) \]

\[
P(\text{on}|C = 2) = 0.1 \\
P(\text{on}|C = 2) = 0.1 \\
P(\text{on}|C = 2) = 0.1 \\
P(\text{on}|C = 3) = 0.8 \\
P(\text{on}|C = 3) = 0.3 \\
P(\text{on}|C = 3) = 0.3 \\
P(\text{on}|C = 3) = 0.3 \\
P(\text{on}|C = 3) = 0.3
\]

2 wins!!

Example: Spam Filtering

- Raw probabilities don’t affect the posteriors; relative probabilities (odds ratios) do:

\[
P(W|\text{ham}) \\
P(W|\text{spam})
\]

\[
\text{south-west : inf} \\
\text{nation : inf} \\
\text{morally : inf} \\
\text{nicely : inf} \\
\text{extent : inf} \\
\text{seriously : inf} \\
\text{...}
\]

\[
\text{screens} : \text{inf} \\
\text{minute} : \text{inf} \\
\text{guaranteed : inf} \\
\text{$205.00 : \text{inf} \ }
\text{delivery : inf} \\
\text{signature : inf} \\
\text{...}
\]

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Unlikely that every occurrence of “minute” is 100% spam
 - Unlikely that every occurrence of “seriously” is 100% ham
 - What about all the words that don’t occur in the training set?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for P(heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did

\[
P_{\text{LAP}}(x) = \frac{c(x) + 1}{\sum_x c(x) + 1} \quad P_{\text{ML}}(x) = \frac{c(x) + 1}{N + |X|}
\]

- Can derive this as a MAP estimate with Dirichlet priors (see cs281a)
Estimation: Laplace Smoothing

- Laplace’s estimate (extended):
 - Pretend you saw every outcome k extra times
 \[P_{\text{LAP}}(x) = \frac{c(x) + k}{N + k} \]
 - What’s Laplace with k = 0?
 \[P_{\text{LAP}0}(X) = \]
 \[P_{\text{LAP}1}(X) = \]
 - Laplace for conditionals:
 - Smooth each condition independently:
 \[P_{\text{LAP}}(x|y) = \frac{c(x,y) + k}{c(y) + k} \]

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Also get P(X) from the data
 - Make sure the estimate of P(X|Y) isn’t too different from P(X)
 \[P_{\text{LIN}}(x|y) = \alpha P(x|y) + (1.0 - \alpha) P(x) \]
 - What if \(\alpha \) is 0? 1?
- For even better ways to estimate parameters, as well as details of the math see cs281a, cs294-7

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:
 - New odds ratios:
 \[\frac{P(W|\text{ham})}{P(W|\text{spam})} \]
 \[\frac{P(W|\text{ham})}{P(W|\text{spam})} \]
 - helvetica / 11.4
 - sans / 10.8
 - group / 10.2
 - area / 8.3
 - ... / ...

Do these make more sense?

Classification

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held-out set
 - Test set
- Experimentation
 - Learn model parameters (probabilities) on training set
 - (Tune performance on held-out set)
 - Run a single test on the test set
 - Very important: never “peek” at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - We’ll investigate overfitting and generalization formally in a few lectures

Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: the probabilities P(Y|X), P(Y)
 - Hyper-parameters, like the amount of smoothing to do: k, \(\alpha \)
- Where to learn?
 - Learn parameters from training data
 - Must tune hyper-parameters on different data
 - Why?
 - For each value of the hyper-parameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First task: get a baseline
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
- For real research, usually use previous work as a (strong) baseline
Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label
 \[\text{confidence}(x) = \arg \max P(y|x) \]
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct
- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What’s the value of calibration?

Errors, and What to Do

- Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we’ve received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you’d rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features– words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model
- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption makes all effects independent given the cause
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them