Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s,a,s') \)
 - Prob that \(a \) from \(s \) leads to \(s' \)
 - i.e., \(P(s' | s,a) \)
 - Also called the model
 - A reward function \(R(s,a,s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions
Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends

- Differences from expectimax:
 - #1: get rewards as you go
 - #2: you might play forever!

High-Low

- States: 2, 3, 4, done
- Actions: High, Low
- Model: $T(s, a, s')$:
 - $P(s' = \text{done} | 4, \text{High}) = 3/4$
 - $P(s' = 2 | 4, \text{High}) = 0$
 - $P(s' = 3 | 4, \text{High}) = 0$
 - $P(s' = 4 | 4, \text{High}) = 1/4$
 - $P(s' = \text{done} | 4, \text{Low}) = 0$
 - $P(s' = 2 | 4, \text{Low}) = 1/2$
 - $P(s' = 3 | 4, \text{Low}) = 1/4$
 - $P(s' = 4 | 4, \text{Low}) = 1/4$
 - ...
- Rewards: $R(s, a, s')$:
 - Number shown on s' if $s \neq s'$
 - 0 otherwise
- Start: 3

Note: could choose actions with search. How?
Example: High-Low

Each MDP state gives an expectimax-like search tree

- (s, a) is a q-state
- (s, a, s') called a transition
 \[T(s, a, s') = P(s'|s, a) \]
 \[R(s, a, s') \]
Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards.
- Typically consider stationary preferences:

\[[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots] \iff [r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots] \]

- Theorem: only two ways to define stationary utilities:
 - Additive utility:
 \[V([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \cdots \]
 - Discounted utility:
 \[V([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \]

Infinite Utilities?!

- Problem: infinite sequences with infinite rewards.
- Solutions:
 - Finite horizon:
 - Terminate after a fixed T steps
 - Gives nonstationary policy (π depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually “die” (like “done” for High-Low)
 - Discounting: for \(0 < \gamma < 1 \)
 \[V([s_0, \ldots s_{\infty}]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq R_{\text{max}}/(1 - \gamma) \]
 - Smaller \(\gamma \) means smaller “horizon” – shorter term focus.
Discounting

- Typically discount rewards by \(\gamma < 1 \) each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Episodes and Returns

- An episode is a run of an MDP
 - Sequence of transitions \((s,a,s')\)
 - Starts at start state
 - Ends at terminal state (if it ends)
 - Stochastic!

- The utility, or return, of an episode
 - The discounted sum of the rewards
 \[
 \sum_i \gamma^i R(s_i, a_i, s_{i+1})
 \]
Utilities under Policies

- Fundamental operation: compute the utility of a state \(s \)
- Define the value (utility) of a state \(s \), under a fixed policy \(\pi \):
 \[V^\pi(s) = \text{expected return starting in } s \text{ and following } \pi \]
- Recursive relation (one-step look-ahead):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Policy Evaluation

- How do we calculate values for a fixed policy?
- Idea one: it’s just a linear system, solve with Matlab (or whatever)
- Idea two: turn recursive equations into updates
 - \(V^\pi(s) = \text{expected returns over the next } i \text{ transitions while following } \pi \)
 \[V^\pi_i(s) = 0 \]
 \[V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_i(s')] \]

Equivalent to doing depth-i search and plugging in zero at leaves
Example: High-Low

- **Policy:** always say “high”
- **Iterative updates:**

\[V_0 = \{2 : 0, \ 3 : 0, \ 4 : 0, \ d : 0 \} \]

\[V_1(2) = \frac{1}{2}(R(2, H, 2) + V_0(2)) + \frac{1}{4}(R(2, H, 3) + V_0(3)) + \frac{1}{4}(R(2, H, 4) + V_0(4)) + 0(R(2, H, d) + V_0(d)) \]

\[V_1(2) = \frac{1}{2}(0 + 0) + \frac{1}{4}(3 + 0) + \frac{1}{4}(4 + 0) + 0(0 + 0) \]

\[V_1(2) = \frac{7}{4} \]

\[V_1 = \{2 : \frac{7}{4}, \ 3 : 1, \ 4 : 0, \ d : 0 \} \]

Q-Functions

- Also, define a q-value, for a state and action (q-state)
 - \(Q^\pi(s) = \) expected return starting in \(s \), taking action \(a \) and following \(\pi \) thereafter

\[
Q^\pi(s, a) = \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^\pi(s')] \\
V^\pi(s) = Q^\pi(s, \pi(s)) \\
Q^\pi(s, a) = \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma Q^\pi(s', \pi(s'))]
\]
Recap: MDP Quantities

- Return = Sum of future discounted rewards in one episode (stochastic)

- V: Expected return from a state under a policy
 \[V^\pi(s) = Q^\pi(s, \pi(s)) \]

- Q: Expected return from a q-state under a policy
 \[Q^\pi(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^\pi(s') \right] \]

Optimal Utilities

- Fundamental operation: compute the optimal utilities of states s

- Define the utility of a state s:
 $V^\pi(s)$ = expected return starting in s and acting optimally

- Define the utility of a q-state (s, a):
 $Q^\pi(s, a)$ = expected return starting in s, taking action a and thereafter acting optimally

- Define the optimal policy:
 $\pi^*(s)$ = optimal action from state s
The Bellman Equations

- Definition of utility leads to a simple relationship amongst optimal utility values:

 \begin{center}
 Optimal rewards = maximize over first action and then follow optimal policy
 \end{center}

- Formally:

 \begin{align*}
 V^*(s) &= \max_a Q^*(s, a) \\
 Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\
 V^*(s) &= \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right].
 \end{align*}

Solving MDPs

- We want to find the optimal policy π

- Proposal 1: modified expectimax search:

 \begin{align*}
 \pi(s) &= \arg \max_a Q^*(s, a) \\
 Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\
 V^*(s) &= \max_a Q^*(s, a).
 \end{align*}
MDP Search Trees?

- **Problems:**
 - This tree is usually infinite (why?)
 - The same states appear over and over (why?)
 - There’s actually one tree per state (why?)

- **Ideas:**
 - Compute to a finite depth (like expectimax)
 - Consider returns from sequences of increasing length
 - Cache values so we don’t repeat work

Value Estimates

- **Calculate estimates** $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value

- **Why:**
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won’t work
Memoized Recursion?

- Recurrences:
 \[V^*_0(s) = 0 \]
 \[V^*_i(s) = \max_a Q^*_i(s, a) \]
 \[Q^*_i(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*_{i-1}(s') \right] \]
 \[\pi_i(s) = \arg \max_a Q^*_i(s, a) \]

- Cache all function call results so you never repeat work
- What happened to the evaluation function?

Value Iteration

- Problems with the recursive computation:
 - Have to keep all the \(V^*_k(s) \) around all the time
 - Don't know which depth \(\pi_k(s) \) to ask for when planning

- Solution: value iteration
 - Calculate values for all states, bottom-up
 - Keep increasing \(k \) until convergence
Value Iteration

- **Idea:**
 - Start with $V_0(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right].
 \]
 - This is called a **value update** or **Bellman update**
 - Repeat until convergence

- **Theorem:** will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

\[
V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right].
\]
\[
V_{i+1}(3,3) = \sum_{s'} T((3,3), \text{right}, s') \left[R((3,3)) + 0.9 V_i(s') \right]
\]
\[
= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right]
\]
Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates.

Convergence*

- Define the max-norm: $\|U\| = \max_s |U(s)|$

- Theorem: For any two approximations U and V

 $\|U^{t+1} - V^{t+1}\| \leq \gamma \|U^t - V^t\|$

 - i.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

- Theorem:

 $\|U^{t+1} - U^t\| < \epsilon, \Rightarrow \|U^{t+1} - U\| < 2\epsilon / (1 - \gamma)$

 - i.e. once the change in our approximation is small, it must also be close to correct.
Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy based on resulting converged (but not optimal!) utilities
 - Repeat steps until policy converges

- This is policy iteration
 - Can converge faster under some conditions

\[V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_{i}^{\pi_k}(s') \right] \]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

\[\pi_{k+1}(s) = \arg\max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right] \]
Comparison

- **In value iteration:**
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- **In policy iteration:**
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- **Hybrid approaches (asynchronous policy iteration):**
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often