Recap: MDPs

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$
 - Start state s_0

- **Quantities:**
 - Returns = sum of discounted rewards
 - Values = expected future returns from a state (optimal, or for a fixed policy)
 - Q-Values = expected future returns from a q-state (optimal, or for a fixed policy)
MDP Search Trees

- Each MDP state gives an expectimax-like search tree

(s, a, s') is a transition

\[T(s, a, s') = P(s'|s, a) \]

\[R(s, a, s') \]

(s, a) is a q-state

Optimal Utilities

- Fundamental operation: compute the optimal utilities of states \(s \) (all at once)

- Why? Optimal values define optimal policies!

- Define the utility of a state \(s \):
 \[V^*(s) = \text{expected return starting in } s \text{ and acting optimally} \]

- Define the utility of a q-state \((s, a)\):
 \[Q^*(s) = \text{expected return starting in } s, \text{ taking action } a \text{ and thereafter acting optimally} \]

- Define the optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
The Bellman Equations

- Definition of utility leads to a simple relationship amongst optimal utility values:

 \[V^*(s) = \max_a Q^*(s, a) \]

 \[Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

- Formally:

Practice: Computing Actions

- Which action should we chose from state \(s \):
 - Given optimal values \(V \):
 \[
 \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
 \]
 - Given optimal q-values \(Q \):
 \[
 \arg \max_a Q^*(s, a)
 \]

 - Lesson: actions are easier to select from Q's!
Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - The same states appear over and over (why?)
 - There’s actually one tree per state (why?)
- Idea: Value iteration
 - Compute optimal values all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value
 - Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won’t work
Value Iteration

- **Idea:**
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):

\[
V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
\]

- This is called a value update or Bellman update
- Repeat until convergence

- **Theorem:** will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

\[
V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
\]
\[
V_{i+1}(3,3) = \sum_{s'} T(3,3, \text{right}, s') \left[R(3,3) + 0.9 V_i(s') \right]
\]
\[
= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right]
\]
Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates.

<table>
<thead>
<tr>
<th></th>
<th>V_2</th>
<th></th>
<th>V_3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0.72</td>
<td>0</td>
<td>0.52</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Convergence*

- Define the max-norm: ||U|| = max_s |U(s)|

- Theorem: For any two approximations U and V

 \[||U^{t+1} - V^{t+1}|| \leq \gamma ||U^t - V^t|| \]

 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution.

- Theorem:

 \[||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1 - \gamma) \]

 - I.e. once the change in our approximation is small, it must also be close to correct.
Policy Iteration

- **Alternative approach:**
 - **Step 1: Policy evaluation:** calculate utilities for a fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy based on resulting converged (but not optimal!) utilities
 - Repeat steps until policy converges

- **This is policy iteration**
 - Can converge faster under some conditions

Policy Iteration

- **Policy evaluation:** with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge

\[
V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_{i}^{\pi_k}(s') \right].
\]

- **Policy improvement:** with fixed utilities, find the best action according to one-step look-ahead

\[
\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{i}^{\pi_k}(s') \right].
\]
Comparison

- **In value iteration:**
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- **In policy iteration:**
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- **Hybrid approaches (asynchronous policy iteration):**
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Reinforcement Learning

- **Reinforcement learning:**
 - Still have an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$

 - New twist: don’t know T or R
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…

- … but it’s tricky!
Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - **Goal:** learn the state values (and maybe the model)

- **In this case:**
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- **Episodes:**
 - $(1,1)$ up -1
 - $(1,2)$ up -1
 - $(2,3)$ right -1
 - $(3,3)$ right -1
 - $(3,2)$ up -1
 - $(3,3)$ right -1
 - $(4,3)$ exit +100

 $\gamma = 1$, $R = -1$

 $U(1,1) \sim (92 + -106) / 2 = -7$

 $U(3,3) \sim (99 + 97 + -102) / 3 = 31.3$
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) the first time we experience \(s,a,s' \)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

Example: Model-Based Learning

- **Episodes:**

<table>
<thead>
<tr>
<th>Episode</th>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1) up -1</td>
<td>(1,1) up -1</td>
<td>+100</td>
</tr>
<tr>
<td>(1,2) up -1</td>
<td>(1,2) up -1</td>
<td>+100</td>
</tr>
<tr>
<td>(1,2) up -1</td>
<td>(1,3) right -1</td>
<td>-100</td>
</tr>
<tr>
<td>(1,3) right -1</td>
<td>(2,3) right -1</td>
<td>+100</td>
</tr>
<tr>
<td>(2,3) right -1</td>
<td>(3,3) right -1</td>
<td>+100</td>
</tr>
<tr>
<td>(3,3) right -1</td>
<td>(3,2) up -1</td>
<td>+100</td>
</tr>
<tr>
<td>(3,2) up -1</td>
<td>(4,2) exit -100</td>
<td>+100</td>
</tr>
<tr>
<td>(3,3) right -1</td>
<td>(done)</td>
<td>+100</td>
</tr>
<tr>
<td>(4,3) exit +100</td>
<td>(done)</td>
<td>+100</td>
</tr>
</tbody>
</table>

\[T(<3,3>, \text{right}, <4,3>) = \frac{1}{3} \]

\[T(<2,3>, \text{right}, <3,3>) = \frac{2}{2} \]
Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

$$V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, a, s') + \gamma V^\pi(s')]$$

$$sample = R(s, a, s') + \gamma V^\pi(s')$$

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Example: Passive TD

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[R(s, a, s') + \gamma V^\pi(s') - V^\pi(s) \right] \]

- (1,1) up -1
- (1,2) up -1
- (1,2) up -1
- (1,3) right -1
- (2,3) right -1
- (3,3) right -1
- (3,2) up -1
- (3,2) up -1
- (3,3) right -1
- (4,3) exit +100
- (done)

Take \(\gamma = 1, \alpha = 0.5 \)

Problems with TD Value Learning

- TD value leaning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma Q^*(s') \right]
\]

- Idea: learn Q-values directly
- Makes action selection model-free too!