Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$
 - Start state s_0

- Quantities:
 - Returns = sum of discounted rewards
 - Values = expected future returns from a state (optimal, or for a fixed policy)
 - Q-Values = expected future returns from a q-state (optimal, or for a fixed policy)

MDP Search Trees

- Each MDP state gives an expectimax-like search tree

Optimal Utilities

- Fundamental operation: compute the optimal utilities of states s (all at once)
- Why? Optimal values define optimal policies!
- Define the utility of a state s: $V(s) = \text{expected return starting in } s$ and acting optimally
- Define the utility of a q-state (s,a): $Q(s) = \text{expected return starting in } s$, taking action a and thereafter acting optimally
- Define the optimal policy: $\pi(s) = \text{optimal action from state } s$

The Bellman Equations

- Definition of utility leads to a simple relationship amongst optimal utility values:
 - Optimal rewards = maximize over first action and then follow optimal policy
- Formally:
 \[
 V^*(s) = \max_a Q^*(s,a) \\
 Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')] \\
 V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]
 \]

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?
 \[
 \arg \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]
 \]
 - Given optimal q-values Q?
 \[
 \arg \max_a Q^*(s,a)
 \]
- Lesson: actions are easier to select from Q's!
Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - The same states appear over and over (why?)
 - There's actually one tree per state (why?)
- Idea: Value iteration
 - Compute optimal values all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates \(V_n(s) \)
 - Not the optimal value of \(s \)!
 - The optimal value considering only next \(k \) time steps (\(k \) rewards)
 - As \(k \to \infty \), it approaches the optimal value
 - Why?
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and this approach actually won't work.

Value Iteration

- Idea:
 - Start with \(V_0(s) = 0 \), which we know is right (why?)
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right].
 \]
 - This is called a value update or Bellman update
 - Repeat until convergence
 - Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

- Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Bellman Updates

\[
V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
\]

\[
V_{i+1}(3, 3) = \sum_{s'} T(3, 3, \text{right}, s') \left[R(3, 3) + 0.9 V_i(s') \right] = 0.9 \times [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]
\]

Convergence*

- Define the max-norm: \(|U| = \max_s |U(s)| \)
- Theorem: For any two approximations \(U \) and \(V \)
 \[
 |U_{i+1} - V_{i+1}| \leq \gamma |U_i - V_i|
 \]
 - I.e. any distinct approximations must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution
- Theorem:
 \[
 |U_{i+1} - U_i| < \epsilon \Rightarrow |U_{i+1} - U_i| < 2\epsilon/(1 - \gamma)
 \]
 - I.e. once the change in our approximation is small, it must also be close to correct
Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy based on resulting converged (but not optimal!) utilities
 - Repeat steps until policy converges

- This is policy iteration
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge
 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_k^\pi(s') \right]
 \]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead
 \[
 \pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k^\pi(s') \right]
 \]

Comparison

- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to \(V(s) \) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…
- … but it’s tricky!
Passive Learning

- Simplified task
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values (and maybe the model)

- In this case:
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- Episodes:
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,3)\) right -1
 - \((3,3)\) right -1
 - \((2,3)\) right -1
 - \((2,3)\) right -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,1)\) up -1

 \(\gamma = 1, R = -1 \)
 \(U(1,1) \approx (92 + -106) / 2 = -7 \)
 \(U(3,3) \approx (99 + 97 + -102) / 3 = 31.3 \)

Model-Based Learning

- Idea:
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- Empirical model learning
 - Simplest case:
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) the first time we experience \(s,a,s' \)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)

Example: Model-Based Learning

- Episodes:
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,3)\) right -1
 - \((3,3)\) right -1
 - \((2,3)\) right -1
 - \((2,3)\) right -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,1)\) up -1

 \(\gamma = 1 \)
 \(T(<3,3>, \text{right}, <4,3>) = 1 / 3 \)
 \(T(<2,3>, \text{right}, <3,3>) = 2 / 2 \)
 \(U(1,1) = (92 + -106) / 2 = -7 \)
 \(U(3,3) = (99 + 97 + -102) / 3 = 31.3 \)

Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from \((1,1)\)
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha \sum \text{sample} \]

Example: Passive TD

\[V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[R(s, a, s') + \gamma V^\pi(s') - V^\pi(s) \right] \]

Problems with TD Value Learning

- TD value learning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we're sunk:
 \[\pi(s) = \arg \max_a Q^\pi(s, a) \]
 \[Q^\pi(s, a) = \sum_s T(s, a, s') \left[R(s, a, s') + \gamma V^\pi(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!