Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

[DEMO]
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…

- … but it’s tricky!
Passive Learning

- **Simplified task**
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - **Goal: learn the state values** (and maybe the model)

- **In this case:**
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- **Episodes:**
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,3)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - \((3,2)\) up -1
 - \((3,2)\) up -1
 - \((4,2)\) exit -100
 - \((3,3)\) right -1
 - \((4,3)\) exit +100

\[\gamma = 1, R = -1 \]

\[U(1,1) \sim \frac{92 + -106}{2} = -7 \]

\[U(3,3) \sim \frac{99 + 97 + -102}{3} = 31.3 \]
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of $T(s, a, s')$
 - Discover $R(s, a, s')$ the first time we experience (s, a, s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)

Example: Model-Based Learning

- **Episodes:**
 - $(1, 1)$ up -1
 - $(1, 2)$ up -1
 - $(1, 2)$ up -1
 - $(1, 3)$ right -1
 - $(2, 3)$ right -1
 - $(3, 3)$ right -1
 - $(3, 2)$ up -1
 - $(3, 2)$ up -1
 - $(3, 3)$ right -1
 - $(4, 3)$ exit +100
 - (done)

$T(<3, 3>, \text{right, } <4, 3>) = 1 / 3$

$T(<2, 3>, \text{right, } <3, 3>) = 2 / 2$
Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

$$V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, a, s') + \gamma V^\pi(s')]$$

$$sample = R(s, a, s') + \gamma V^\pi(s')$$

$$V^\alpha(s) \leftarrow (1 - \alpha)V^\alpha(s) + (\alpha)sample$$
Example: Passive TD

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)[R(s, a, s') + \gamma V^\pi(s')] \]

Take \(\gamma = 1, \alpha = 0.5 \)

Problems with TD Value Learning

- TD value learning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!
Q-Learning

- Learn \(Q^*(s,a) \) values
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s,a) \)
 - Consider your new sample estimate:
 \[
 Q^*(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma V^*(s')]
 \]
 \[
 \text{sample} = R(s,a,s') + \gamma \max_{a'} Q(s',a')
 \]
 - Nudge the old estimate towards the new sample:
 \[
 Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha \text{[sample]}
 \]

Q-Learning Example

- [DEMO]
Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough

- Neat property: does not learn policies which are optimal in the presence of action selection noise

![Diagram of Q-learning scenario]

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

$$
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a')
$$

$$
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))
$$

Q-Learning

- Q-learning produces tables of q-values:

![Q-values table](image)
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to even hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:
 - In naïve q learning, we know nothing about this state or its q states:
 - Or even this one!
Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:
 \[Q(s, a) \leftarrow Q(s, a) + \alpha [\text{error}] \]
 \[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features

- Formal justification: online least squares (much later)

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]
\[R(s, a, s') = -500 \]
\[\text{error} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Policy Search

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:
 \[
 \pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}
 \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w\) (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.
Take a Deep Breath…

- We’re done with search and planning!

- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!

- Last part of course: machine learning