Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - i.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to \(V(s) \) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

 - You could imagine training Pacman this way…
 - … but it’s tricky!

Passive Learning

- Simplified task
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values (and maybe the model)

 - In this case:
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the general case soon

Example: Direct Estimation

- Episodes:

 - \((1,1) \) up -1
 - \((1,2) \) up -1
 - \((1,3) \) right -1
 - \((2,3) \) right -1
 - \((3,3) \) right -1
 - \((4,3) \) exit +100

 - \(\gamma = 1 \), \(R = -1 \)

\[U(1,1) \approx \frac{(-92 + -106)}{2} = -7 \]
\[U(3,3) \approx \frac{(-99 + 97 - 102)}{3} = 31.3 \]
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each \(s,a\)
 - Normalize to give estimate of \(T(s,a,s')\)
 - Discover \(R(s,a,s')\) the first time we experience \((s,a,s')\)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)

Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- **Idea:** adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

Example: Model-Based Learning

- **Episodes:**
 - \((1,1)\) up -1 \((1,1)\) up -1
 - \((1,2)\) up -1 \((1,2)\) up -1
 - \((1,3)\) right -1 \((1,3)\) right -1
 - \((2,3)\) right -1 \((2,3)\) right -1
 - \((3,2)\) up -1 \((3,2)\) up -1
 - \((3,3)\) right -1 \((3,3)\) right -1
 - \((4,3)\) exit +100

- \(T(<3,3>, \text{right}, <4,3>) = 1 / 3\)
- \(T(<2,3>, \text{right}, <3,3>) = 2 / 2\)

Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from \((1,1)\)
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy

What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- **Fundamental tradeoff:**
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploitation reduces utility
 - Systems must explore in the beginning and exploit in the limit

Model-Free Learning

- **Big idea:** why bother learning \(T\)?
 - Update \(V\) each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- **Temporal difference learning (TD)**
 - Policy still fixed!
 - Move values toward value of whatever successor occurs

 \[V^\pi(s) \leftarrow V^\pi(s) + \alpha T(s, \pi(s), s') R(s, a, s') + \gamma V^\pi(s')\]

 \[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \text{sample}\]
Example: Passive TD

\[V^\pi(s) = (1 - \alpha)V^\pi(s) + \alpha \left[R(s, a, s') + \gamma V^\pi(s') \right] \]

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,3) right -1
(3,3) right -1
(4,3) exit +100
(done)

Take \(\gamma = 1, \alpha = 0.5 \)

Problems with TD Value Learning

- TD value learning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:
 \[\pi(s) = \arg \max_a Q^*(s, a) \]
 \[Q^*(s, a) = \sum_a T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]
 - Idea: learn Q-values directly
 - Makes action selection model-free too!

Q-Learning

- Learn \(Q^*(s, a) \) values
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a) \)
 - Consider your new sample estimate:
 \[Q'(s, a) = \sum_a T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Nudge the old estimate towards the new sample:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \text{[sample]} \]

Q-Learning Example

- [DEMO]

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
- Neat property: does not learn policies which are optimal in the presence of action selection noise

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (\(\epsilon \)-greedy)
 - Every time step, flip a coin
 - With probability \(\epsilon \), act randomly
 - With probability \(1 - \epsilon \), act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower \(\epsilon \) over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + \frac{k}{n} \) (exact form not important)

\[
\begin{align*}
Q_{t+1}(s, a) &\leftarrow R(s, a, s') + \gamma \max_{a'} Q_t(s', a') \\
Q_{t+1}(s, a) &\leftarrow R(s, a, s') + \gamma \max_{a'} f(Q_t(s', a'), N(s', a'))
\end{align*}
\]

Q-Learning

- Q-learning produces tables of q-values:

Example: Pacman

- Let’s say we discover through experience that this state is bad:
 - In naïve q learning, we know nothing about this state or its q states:
 - Or even this one!

Feature-Based Representations

- **Solution: describe a state using a vector of features**
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)^2
 - Is Pacman in a tunnel? (0/1)
 - … etc.
 - Can also describe a q-state \((s, a)\) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[
V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

\[
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
\]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a) \]

- Q-learning with linear q-functions:
 \[Q(s,a) \leftarrow Q(s,a) + \alpha \text{error} \]
 \[w_i \leftarrow w_i + \alpha \text{error} f_i(s,a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- Formal justification: online least squares (much later)

Example: Q-Pacman

\[Q(s,a) = 4.0 f_{\text{NORTH}}(s,a) - 1.0 f_{\text{SOUTH}}(s,a); \]
\[f_{\text{NORTH}}(s,\text{NORTH}) = 0.5 \]
\[f_{\text{SOUTH}}(s,\text{NORTH}) = 1.0 \]
\[Q(s,a) = +1 \]
\[R(s,a,s') = -50 \]
\[\text{error} = -501 \]
\[w_{\text{NORTH}} \leftarrow 4.0 + \alpha \cdot [-501] \cdot 0.5 \]
\[w_{\text{SOUTH}} \leftarrow -1.0 + \alpha \cdot [-501] \cdot 1.0 \]
\[Q(s,a) = 3.0 f_{\text{NORTH}}(s,a) - 3.0 f_{\text{SOUTH}}(s,a) \]

Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

 - This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:
- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Advanced policy search:
- Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.
Take a Deep Breath…

- We’re done with search and planning!
- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!
- Last part of course: machine learning