Reinforcement Learning

- **Reinforcement learning:**
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A(s) \)
 - A transition model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
 - Quantities: \(V(s) \), \(Q(s,a) \) are expected future returns

Q-Learning

- Learn \(Q^*(s,a) \) values
- Receive a sample \((s,a,s',r) \)
- Consider your old estimate: \(Q(s,a) \)
- Consider your new sample estimate:
 \[
 Q(s,a) = \sum_{a'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]
 \]
- Nudge the old estimate towards the new sample:
 \[
 Q(s,a) \leftarrow (1 - \alpha) Q(s,a) + \alpha \text{ [sample]}
 \]

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - But not decrease it too quickly!
- Neat property: learns optimal q-values regardless of action selection noise (some caveats)

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (\(\epsilon \)-greedy)
 - Every time step, flip a coin
 - With probability \(\epsilon \), act randomly
 - With probability 1-\(\epsilon \), act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower \(\epsilon \) over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \) (exact form not important)
 \[
 Q_{t+1}(s,a) \leftarrow R(s,a,s') + \gamma \max_{a'} Q_t(s',a') \\
 Q_{t+1}(s,a) \leftarrow R(s,a,s') + \gamma \max_{a'} f(Q_t(s',a'), N(s',a'))
 \]
Q-Learning

- Q-learning produces tables of q-values:

In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states

This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:
 - In naïve q learning, we know nothing about this state or its q states:
 - Or even this one!

Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)
 - Is Pacman in a tunnel? (0/1)
 - …… etc.

Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)
 - Is Pacman in a tunnel? (0/1)
 - …… etc.

Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Function Approximation

- Q-learning with linear q-functions:
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

 \[Q(s, a) \leftarrow Q(s, a) + \alpha [error] \]
 \[w_i \leftarrow w_i + \alpha [error] f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features
- Formal justification: online least squares
Example: Q-Pacman

\[Q(s,a) = 4.0f_{\text{NORTH}}(s,a) - 1.0f_{\text{SOUTH}}(s,a); \]
\[f_{\text{NORTH}}(s) = 0.5 \]
\[f_{\text{SOUTH}}(s) = 1.0 \]
\[Q(s,a) = +1 \]
\[R(s,a,s') = -500 \]
\[\text{error} = -501 \]
\[w_{\text{DOW}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]
\[Q(s,a) = 3.0f_{\text{DOW}}(s,a) - 3.0f_{\text{GST}}(s,a) \]

Linear regression

Given examples \((x_i, y_i)_{i=1}^n \)
Predict \(y_{n+1} \) given a new point \(x_{n+1} \)

Linear regression

Prediction \(\hat{y}_i = w_0 + w_1x_i \)
Prediction \(\hat{y}_i = w_0 + w_1x_{i,1} + w_2x_{i,2} \)

Ordinary Least Squares (OLS)

\[\sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]

Minimizing Error

\[E(w) = \frac{1}{2} \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]
\[\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]
\[E \leftarrow E + \alpha \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

Value update explained:
\[w_i \leftarrow w_i + \alpha \text{[error]} f_i(s,a) \]

Overfitting

Degree 15 polynomial
Problem: often the feature-based policies that work well aren’t the ones that approximate \(V \) / \(Q \) best
- E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
- We’ll see this distinction between modeling and prediction again later in the course

Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:
- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Advanced policy search:
- Write a stochastic (soft) policy:
 \[
 \pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}
 \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.

Take a Deep Breath…

We’re done with search and planning!

Next, we’ll look at how to reason with probabilities
- Diagnosis
- Tracking objects
- Speech recognition
- Robot mapping
- … lots more!

Last part of course: machine learning