Probabilistic Models

- A probabilistic model is a joint distribution over a set of variables
 \[P(X_1, X_2, \ldots, X_n) \]

- Given a joint distribution, we can reason about unobserved variables given observations (evidence)
- General form of a query:
 \[P(X_q|x_{e1}, \ldots, x_{ek}) \]

- This kind of posterior distribution is also called the belief function of an agent which uses this model
Independence

- Two variables are independent if:
 \[P(X, Y) = P(X)P(Y) \]
 - This says that their joint distribution factors into a product two simpler distributions
- Independence is a modeling assumption
 - Empirical joint distributions: at best “close” to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

- How many parameters in the joint model?
- How many parameters in the independent model?
- Independence is like something from CSPs: what?

Example: Independence

- N fair, independent coin flips:

\[
P(X_1) \begin{array}{c|c} H & 0.5 \\ T & 0.5 \end{array} \quad P(X_2) \begin{array}{c|c} H & 0.5 \\ T & 0.5 \end{array} \ldots \quad P(X_n) \begin{array}{c|c} H & 0.5 \\ T & 0.5 \end{array}
\]

\[
P(X_1, X_2, \ldots, X_n) \quad 2^n
\]
Example: Independence?

- Most joint distributions are not independent
- Most are poorly modeled as independent

<table>
<thead>
<tr>
<th></th>
<th>(P(T))</th>
<th>(P(S))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T)</td>
<td>(P)</td>
</tr>
<tr>
<td>warm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(T, S)
\]

<table>
<thead>
<tr>
<th></th>
<th>(T)</th>
<th>(S)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(T)P(S)
\]

<table>
<thead>
<tr>
<th></th>
<th>(T)</th>
<th>(S)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Conditional Independence

- \(P(\text{Toothache}, \text{Cavity}, \text{Catch})? \)

- If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a toothache:
 - \(P(\text{catch} \mid \text{toothache}, \text{cavity}) = P(\text{catch} \mid \text{cavity}) \)

- The same independence holds if I don’t have a cavity:
 - \(P(\text{catch} \mid \text{toothache}, \neg \text{cavity}) = P(\text{catch} \mid \neg \text{cavity}) \)

- Catch is conditionally independent of Toothache given Cavity:
 - \(P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \)

- Equivalent statements:
 - \(P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \)
 - \(P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \)
Conditional Independence

- Unconditional (absolute) independence is very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

\[P(X, Y|Z) = P(X|Z)P(Y|Z) \]

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

The Chain Rule II

- Can always factor any joint distribution as an incremental product of conditional distributions

\[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1) \ldots \]

\[P(X_1, X_2, \ldots, X_n) = \prod_i P(X_i|X_1 \ldots X_{i-1}) \]

- Why?
- This actually claims nothing…
- What are the sizes of the tables we supply?
The Chain Rule III

- Trivial decomposition:
 \[P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic) \]
- With conditional independence:
 \[P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain) \]
- Conditional independence is our most basic and robust form of knowledge about uncertain environments
- Graphical models help us manage independence

Graphical Models

- Models are descriptions of how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information
Bayes’ Nets: Big Picture

- Two problems with using full joint distributions for probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to estimate anything empirically about more than a few variables at a time

- Bayes’ nets (more properly called graphical models) are a technique for describing complex joint distributions (models) using a bunch of simple, local distributions
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be very vague about how these interactions are specified

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate “direct influence” between variables

- For now: imagine that arrows mean causation
Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?
Example: Traffic II

- Let’s build a causal graphical model

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes’ Net Semantics

- Let’s formalize the semantics of a Bayes’ net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 $$P(X | a_1 \ldots a_n)$$
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 $$P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))$$
 - Example:
 $$P(\text{cavity}, \text{catch}, \neg \text{toothache})$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

P(R, ¬t) =
Example: Alarm Network

Imagine we have one cause y and several effects x:

$$P(y, x_1, x_2 \ldots x_n) = P(y)P(x_1|y)P(x_2|y) \ldots P(x_n|y)$$

This is a naïve Bayes model

We’ll use these for classification later
Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame

Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?

- How big is an N-node net if nodes have k parents?

- Both give you the power to calculate $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (next class)
Building the (Entire) Joint

- We can take a Bayes’ net and build the full joint distribution it encodes

\[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

- Typically, there’s no reason to build ALL of it
- But it’s important to know you could!

- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain

Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

\[
\begin{array}{c|c|c}
R & t & \frac{3}{4} \\
\hline
\neg R & t & \frac{1}{4} \\
\hline
\neg R & \neg t & \frac{1}{2} \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c}
P(T, R) & \frac{1}{16} & \frac{3}{16} \\
\hline
r & t & \frac{1}{16} \\
\neg r & t & \frac{6}{16} \\
\neg r & \neg t & \frac{6}{16} \\
\end{array}
\]
Example: Reverse Traffic

- Reverse causality?

<table>
<thead>
<tr>
<th></th>
<th>$P(T)$</th>
<th></th>
<th>$P(T, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>$9/16$</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>$\neg t$</td>
<td>$7/16$</td>
<td>r</td>
</tr>
</tbody>
</table>

| $P(R|T)$ | | |
|---|---|---|
| t | r | $1/3$ |
| $\neg r$ | $2/3$ |
| $\neg t$ | r | $1/7$ |
| $\neg r$ | $6/7$ |

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independencies
Creating Bayes’ Nets

- So far, we talked about how any fixed Bayes’ net encodes a joint distribution

- Next: how to represent a fixed distribution as a Bayes’ net
 - Key ingredient: conditional independence
 - The exercise we did in “causal” assembly of BNs was a kind of intuitive use of conditional independence
 - Now we have to formalize the process

- After that: how to answer queries (inference)