A Bayes’ net is an efficient encoding of a probabilistic model of a domain

Questions we can ask:
- Inference: given a fixed BN, what is $P(X \mid e)$?
- Representation: given a fixed BN, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?
Example Bayes’ Net

Example: Traffic

- **Variables**
 - **T:** Traffic
 - **R:** It rains
 - **L:** Low pressure
 - **D:** Roof drips
 - **B:** Ballgame
Bayes’ Net Semantics

- A Bayes’ net:
 - A set of nodes, one per variable X
 - A directed, acyclic graph
 - A conditional distribution of each variable conditioned on its parents (the parameters θ)

$$P(X|a_1 \ldots a_n)$$

- Semantics:
 - A BN defines a joint probability distribution over its variables:

$$P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))$$

Example: Mini Traffic

<table>
<thead>
<tr>
<th>$P(R)$</th>
<th>r</th>
<th>$\frac{1}{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg r$</td>
<td>$\frac{3}{4}$</td>
<td></td>
</tr>
</tbody>
</table>

| $P(T|R)$ | t | $\frac{3}{4}$ |
|----------|-----|--------------|
| $\neg t$ | $\frac{1}{4}$ |
| $\neg r$ | t | $\frac{1}{2}$ |
| $\neg t$ | $\frac{1}{2}$ |

$P(r, \neg t) =$
Building the (Entire) Joint

- We can take a Bayes’ net and build any entry from the full joint distribution it encodes

\[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Typically, there’s no reason to build ALL of it
- We build what we need on the fly

- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain, but is specified by local probabilities

Example: Alarm Network

\[
P(b, e, \neg a, j, m) =
\]
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
- How big is an N-node net if nodes have k parents?
- Both give you the power to calculate $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (next class)

Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)
Conditional Independence

- **Reminder: independence**
 - X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y|z) = P(x)P(y) \quad \rightarrow \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution

Example: Independence

- For this graph, you can fiddle with \(\theta \) (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

\[
\begin{align*}
\text{X}_1 \quad &\quad \text{X}_2 \\
P(X_1) &\quad P(X_2) \\
| &\quad | \\
h &\quad h &\quad 0.5 &\quad 0.5 \\
t &\quad t &\quad 0.5 &\quad 0.5 \\
\end{align*}
\]

\(X_1 \perp X_2 \)
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence).
- Adding arcs increases the set of distributions, but has several costs.

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
 - Example:

 ![Diagram of X, Y, Z with arrows indicating dependencies]

- Question: are X and Z independent?
 - Answer: not necessarily, we’ve seen examples otherwise: low pressure causes rain which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?
Causal Chains

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Is X independent of Z given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} \]

\[= P(z|y) \quad \text{Yes!} \]

- Evidence along the chain “blocks” the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?

- Are X and Z independent given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} \]

\[= P(z|y) \quad \text{Yes!} \]

- Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (homework)
 - Are X and Z independent given Y?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - **This is backwards from the other cases**
 - Observing the effect enables influence between effects.

The General Case

- Any complex example can be analyzed using these three canonical cases

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: graph search!
Reachability

- Recipe: shade evidence nodes

- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless shaded

Reachability (the Bayes’ Ball)

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search

- States: pair of (node X, previous state S)

- Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent

- If you can’t reach a node, it’s conditionally independent of the start node given evidence
Example

\[A \perp W \quad \text{Yes} \]
\[A \perp W | R \]

Example

\[L \perp T' | T \quad \text{Yes} \]
\[L \perp B \quad \text{Yes} \]
\[L \perp B | T \]
\[L \perp B | T' \]
\[L \perp B | T, R \quad \text{Yes} \]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**
 \[
 T \perp D \\
 T \perp D | R \quad \text{Yes} \\
 T \perp D | R, S
 \]

Causality?

- **When Bayes’ nets reflect the true causal patterns:**
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- **BNs need not actually be causal**
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- **What do the arrows really mean?**
 - Topology may happen to encode causal structure
 - **Topology only guaranteed to encode conditional independencies**
Example: Traffic

- Basic traffic net
- Let’s multiply out the joint

\[
\begin{array}{c|c}
R & P(R) \\
\hline
r & 1/4 \\
\neg r & 3/4 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c}
P(T|R) & t & \frac{3}{4} \\
-\neg t & \frac{1}{4} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
P(T,R) & t & 3/16 \\
r & -\neg t & 1/16 \\
\neg r & t & 6/16 \\
\neg r & -\neg t & 6/16 \\
\end{array}
\]

Example: Reverse Traffic

- Reverse causality?

\[
\begin{array}{c|c}
T & P(T) \\
\hline
t & 9/16 \\
-\neg t & 7/16 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c}
P(R|T) & t & 1/3 \\
\neg r & 2/3 \\
\neg t & 1/7 \\
\neg r & 6/7 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
P(T,R) & t & 3/16 \\
r & -\neg t & 1/16 \\
\neg r & t & 6/16 \\
\neg r & -\neg t & 6/16 \\
\end{array}
\]

13
Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

\[
P(X_1) \quad P(X_2) \quad P(X_1) \quad P(X_2|X_1)
\]

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>t</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Alternate BNs
Summary

- Bayes nets compactly encode joint distributions

- Guaranteed independencies of distributions can be deduced from BN graph structure

- The Bayes’ ball algorithm (aka d-separation)

- A Bayes’ net may have other independencies that are not detectable until you inspect its specific distribution