Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain
- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a fixed BN, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Example Bayes’ Net

Example: Traffic

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame

Example: Mini Traffic

Bayes’ Net Semantics

- A Bayes’ net:
 - A set of nodes, one per variable X
 - A directed, acyclic graph
 - A conditional distribution of each variable conditioned on its parents (the parameters θ)

- Semantics:
 - A BN defines a joint probability distribution over its variables:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]
Building the (Entire) Joint

- We can take a Bayes’ net and build any entry from the full joint distribution it encodes
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Typically, there’s no reason to build ALL of it
- We build what we need on the fly
- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain, but is specified by local probabilities

Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
- How big is an N-node net if nodes have k parents?
 - Both give you the power to calculate \(P(X_1, X_2, \ldots, X_n) \)
 - BNs: Huge space savings!
 - Also easier to elicit local CPTs
 - Also turns out to be faster to answer queries (next class)

Conditional Independence

- Reminder: independence
 - X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \implies \quad X \perp Y \]
 - X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y | z) = P(x | z)P(y | z) \quad \implies \quad X \perp Y | Z \]
 - (Conditional) independence is a property of a distribution

Example: Alarm Network

- Example: Alarm Network
- Size of a Bayes’ Net
- Building the (Entire) Joint
- Conditional Independence
- Bayes’ Nets
- Example: Independence

Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
 - After that: how to answer numerical queries (inference)
Topology Limits Distributions

- Given some graph topology \(G \), only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
 - Example:

```
X -- Y -- Z
```

- Question: are \(X \) and \(Z \) independent?
 - Answer: not necessarily, we’ve seen examples otherwise:
 - low pressure causes rain which causes traffic.
 - \(X \) can influence \(Z \), \(Z \) can influence \(X \) (via \(Y \))
 - Addendum: they could be independent: how?

Causal Chains

- This configuration is a “causal chain”

```
X -- Y -- Z
```

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]

- Is \(X \) independent of \(Z \) given \(Y \)?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \quad \text{Yes!}
\]

- Evidence along the chain “blocks” the influence

Common Cause

- Another basic configuration: two effects of the same cause

```
X -- Y -- Z
```

- Are \(X \) and \(Z \) independent given \(Y \)?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y) \quad \text{Yes!}
\]

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)

```
X \quad Y \quad Z
```

- Are \(X \) and \(Z \) independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (homework)
- Are \(X \) and \(Z \) independent given \(Y \)?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - This is backwards from the other cases
 - Observing the effect enables influence between effects.

The General Case

- Any complex example can be analyzed using these three canonical cases

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: graph search!
Reachability
- **Recipe:** shade evidence nodes
- **Attempt 1:** if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- **Almost works, but not quite**
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless shaded

Reachability (the Bayes’ Ball)
- **Correct algorithm:**
 - Shade in evidence
 - Start at source node
 - Try to reach target by search
- **States:** pair of (node X, previous state S)
- **Successor function:**
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent
- **If you can’t reach a node, it’s conditionally independent of the start node given evidence**

Example

Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I’m sad

Questions:
- \(T \perp I \)
- \(T \perp D | R \)
- \(T \perp D | R, S \)

Example

Causality?
- **When Bayes’ nets reflect the true causal patterns:**
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- **BNs need not actually be causal**
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables Traffic and Drips
- **What do the arrows really mean?**
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independencies
Example: Traffic

- Basic traffic net
- Let's multiply out the joint

\[
P(R, T) = P(T|R) \cdot P(R)
\]

\[
P(T|R)
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|}
 & r & t & \frac{3}{4} & \frac{1}{4} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} \\
\hline
r & -t & \frac{1}{4} & \frac{1}{4} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} \\
\hline
r & t & \frac{3}{4} & \frac{1}{4} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} \\
\hline
\end{array}
\]

\[
P(R)
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|}
 & r & t & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
r & -t & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
r & t & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
\end{array}
\]

Example: Reverse Traffic

- Reverse causality?

\[
P(T) = P(T|R) \cdot P(R)
\]

\[
P(T|R)
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|}
 & t & \frac{1}{2} & \frac{2}{3} & \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
r & -t & \frac{1}{2} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \\
\hline
r & t & \frac{1}{2} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \\
\hline
\end{array}
\]

\[
P(R)
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|}
 & t & \frac{1}{2} \\
\hline
r & -t & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
r & t & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\hline
\end{array}
\]

Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

\[
P(X_1) = P(X_2) = \frac{1}{2}
\]

\[
P(X_1|X_2) = \begin{cases}
\frac{1}{2} & \text{if } X_2 = t \\
\frac{1}{2} & \text{if } X_2 = h
\end{cases}
\]

Alternate BNs

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes’ ball algorithm (aka d-separation)
- A Bayes’ net may have other independencies that are not detectable until you inspect its specific distribution