Announcements

- Project 5 is up, due 11/19 (an extension of 4)
- Probability review and BN/HMM recap sessions

Laws of Probability

- Marginalization:
 \[P(a) = \sum_b P(a, b) \]
- Definition of conditional probability:
 \[P(a|b) = \frac{P(a, b)}{P(b)} \]
- Chain rule:
 \[P(a, b, c) = P(a) P(b|a) P(c|a, b) \]
- Combinations, e.g. conditional chain rule:
 \[P(b, c|a) = P(b|a) P(c|a, b) \]

Some More Laws

- Chain rule (always true):
 \[P(a, b, c) = P(a) P(b|a) P(c|a, b) \]
- With A and C independent given B:
 \[P(a, b, c) = P(a) P(b|a) P(c|a) \]
- If we want a conditional distribution over A, can just normalize the corresponding joint wrt A:
 \[P(a|b) = \frac{P(a, b)}{P(b)} \sim_A P(a, b) \]

Recap: Some Simple Cases

Queries:

- Models:
 \[X_1 \rightarrow X_2 \]
 \[P(X_1|x_1) \]
 \[P(X_2|x_1) \]
 \[P(X_2) \]
 \[P(x_2|x_1) = \sum_{x_2} P(x_2|x_1) \]
 \[= \sum_{x_2} P(x_1, x_2) \]
 \[= \sum_{x_1} P(x_1) P(x_2|x_1) \]
 \[P(x_2) = \sum_{x_1} P(x_1, x_2) \]
 \[= \sum_{x_1} P(x_2|x_1) P(x_1) \]
 \[P(X_2|x_1) = \frac{P(x_2|x_1) P(x_1)}{\sum_{x_1} P(x_2|x_1) P(x_1)} \]
 \[P(X_2) = \sum_{x_1} P(x_1) P(x_2|x_1) \]
 \[P(X_2) = \sum_{x_2} P(x_2) \]
 \[= \sum_{x_1} P(x_1) P(x_2|x_1) \]

- Models:
 \[X_1 \rightarrow X_2 \]
 \[P(X_2|x_2, x_1) \]
 \[P(X_2) \]
 \[P(x_2|x_1) = \frac{P(x_2|x_1) P(x_1)}{\sum_{x_1} P(x_2|x_1) P(x_1)} \]
 \[P(x_2) = \sum_{x_1} P(x_1) P(x_2|x_1) \]
Recap: Some Simple Cases

\[P(X_2|e_2, e_1) = \sum_{x_1} P(x_2|x_1, e_1)P(e_2|x_1) \]

Hidden Markov Models

An HMM is
- Initial distribution: \(P(X_1) \)
- Transitions: \(P(X|X_{-1}) \)
- Emissions: \(P(E|X) \)

Battleship HMM

- \(P(X_1) \) = uniform
- \(P(X|X') \) = usually move according to fixed, known patrol policy (e.g., clockwise), sometimes move in a random direction or stay in place
- \(P(R_{ij}|X) \) = as before: depends on distance from ships in \(x \) to \((i,j) \) (really this is just one of many independent evidence variables that might be sensed)

Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the belief state:

\[B_t(X) = P(X_t|e_{1:t}) \]

We start with \(B(X) \) in an initial setting, usually uniform

As time passes, or we get observations, we update \(B(X) \)

The Forward Algorithm

- We are given evidence at each time and want to know
 \[B_t(X) = P(X_t|e_{1:t}) \]
- We can derive the following updates
 \[P(x_t|e_{1:t}) \propto \sum_{x_{t-1}} P(x_t|x_{t-1}, e_{1:t-1})P(e_t|x_{t-1}) \]

Belief Updates

- Every time step, we start with current \(P(X|e) \)
- We update for time:
 \[P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1})P(x_t|x_{t-1})P(e_t|x_{t-1}) \]
- We update for evidence:
 \[P(x_t|e_{1:t}) \propto \sum_{x_t} P(e_t|x_t)P(x_t|e_{1:t-1}) \]
- The forward algorithm does both at once (and doesn’t normalize)
- Problem: space is \(|X| \) and time is \(|X|^2 \) per time step
Particle Filtering

- Sometimes |X| is too big to use exact inference
- |X| may be too big to even store B(X)
- E.g. X is continuous
- |X|^2 may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

Particle Filtering: Time

- Each particle is moved by sampling its next position from the transition model
 \[x' = \text{sample}(P(X'|x)) \]
- This is like prior sampling – samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observation

- Slightly trickier:
 - We don't sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence
 \[w(x) = P(e|x) \]
 \[B(X) \propto P(e|X)B'(X) \]
 - Note that, as before, the probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))

Particle Filtering: Resampling

- Rather than tracking weighted samples, we resample
 - N times, we choose from our weighted sample distribution (i.e. draw with replacement)
 - This is equivalent to renormalizing the distribution
 - Now the update is complete for this time step, continue with the next one

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

SLAM

- SLAM = Simultaneous Localization And Mapping
 - We do not know the map or our location
 - Our belief state is over maps and positions!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods
 - [DEMOS]

[DEMOS] DIP-SLAM, Ron Parr
Most Likely Explanation

- Question: most likely sequence ending in x at t?
 - E.g. if sun on day 4, what’s the most likely sequence?
 - Intuitively: probably sun all four days
- Slow answer: enumerate and score

$$P(X_t = \text{sun}) = \max_{x_{1:t-1}} P(x_1, \ldots, x_{t-1}, \text{sun})$$
$$P(X_t = \text{sun}|X_{t-1} = \text{sun})P(X_{t-1} = \text{sun}|X_{t-2} = \text{sun})P(X_{t-2} = \text{sun}|X_{t-3} = \text{sun})$$
$$P(X_1 = \text{sun})= P(X_2 = \text{rain}|X_1 = \text{sun})P(X_3 = \text{sun}|X_2 = \text{rain})P(X_4 = \text{sun}|X_3 = \text{rain})$$

Mini-Viterbi Algorithm

- Better answer: cached incremental updates
- Define: $$m_t[x] = \max_{x_{1:t-1}} P(x_1, \ldots, x_t)$$
 - $$u_t[x] = \arg \max_{x_{1:t-1}} P(x_1, \ldots, x_t)$$
- Read best sequence off of m and a vectors

Mini-Viterbi

Viterbi Algorithm

- Question: what is the most likely state sequence given the observations?
- Slow answer: enumerate all possibilities
- Better answer: cached incremental version

$$z^*_{1:T} = \arg \max_{z_{1:T}} P(x_{1:T}|z_{1:T})$$
$$m_t[x_i] = \max_{x_{1:t-1}} P(x_1, \ldots, x_t, e_{t+1})$$
 - $$u_t[x_i] = \arg \max_{x_{1:t-1}} P(x_1, \ldots, x_t, e_{t+1})$$
- Read best sequence off of m and a vectors

Example