Hidden Markov Models

- An HMM is
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{t-1})$
 - Emissions: $P(E|X)$

Most Likely Explanation

- Remember: weather Markov chain

tracking:

Viterbi: $\arg \max_{x_{t-1}} P(x_{1:t}) \Rightarrow \arg \max_{x_{t-1}} P(x_{1:t}|e_{1:t})$

Mini-Viterbi Algorithm

- Better answer: cached incremental updates

Define: $m_t[x] = \max_{x_{t-1}} P(x_{1:t-1}, x)$
$a_t[x] = \arg \max_{x_{t-1}} P(x_{1:t-1}, x)$

Read best sequence off of m and a vectors

Mini-Viterbi

$m_t[x] = \max_{x_{t-1}} P(x_{1:t-1}, x)$
$a_t[x] = \arg \max_{x_{t-1}} P(x_{1:t-1}, x)$

$m_1[x] = P(x_1)$
Viterbi Algorithm

- Question: what is the most likely state sequence given the observations $e_{1:T}$?
 - Slow answer: enumerate all possibilities
 - Better answer: incremental updates

$$x^*_{1:T} = \arg \max_{x_{1:T}} \mathbb{P}(x_{1:T} | e_{1:T}) = \arg \max_{x_{1:T}} \mathbb{P}(x_{1:T}, e_{1:T})$$

$$m_t[x_t] = \max_{x_{t-1}} \mathbb{P}(x_{t-1:T}, e_{t:T} | x_{t-1})$$

$$= \max_{x_{t-1}} \mathbb{P}(x_{t-1:T}, e_{t:T}) \mathbb{P}(x_{t-1} | e_t)$$

$$= P(e_t | x_t) \max_{x_{t-1}} P(x_t | x_{t-1}) \max_{x_{t-2}} P(x_{t-1:T}, e_{t-1:T})$$

$$= P(e_t | x_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m_{t-1}[x_{t-1}]$$

Example

- Speech input is an acoustic wave form

Speech in an Hour

- Adding 100 Hz + 1000 Hz Waves

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

- Fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency

Digitizing Speech

- Spectral Analysis

- Adding 100 Hz + 1000 Hz Waves

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/
Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Part of [ae] from “lab”

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Resonances of the vocal tract

- The human vocal tract as an open tube
 - Closed end
 - Open end
 - Length 17.5 cm.

- Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

- These are the observations, now we need the hidden states X
State Space

- $P(E|X)$ encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- $P(X|X')$ encodes how sounds can be strung together
- We will have one state for each sound in each word
- From some state x, can only:
 - Stay in the same state (e.g. speaking slowly)
 - Move to the next position in the word
 - At the end of the word, move to the start of the next word
- We build a little state graph for each word and chain them together to form our state space X

HMMs for Speech

- Markov Process with Bigrams
- While there are some practical issues, finding the words given the acoustics is an HMM inference problem
- We want to know which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$:
 \[
 r_{1:T}^* = \arg \max_{x_{1:T}} P(x_{1:T}|e_{1:T})
 \]
 \[
 = \arg \max_{x_{1:T}} P(x_{1:T}, e_{1:T})
 \]
- From the sequence x, we can simply read off the words

Markov Process with Bigrams

- Decoding
- POMDPs
- Up until now:
 - MDPs: decision making when the world is fully observable (even if the actions are non-deterministic)
 - Probabilistic reasoning: computing beliefs in a static world
- What about acting under uncertainty?
 - In general, the formalization of the problem is the partially observable Markov decision process (POMDP)
 - A simple case: value of information

POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition fn $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$
- POMDPs add:
 - Observations O
 - Observation function $P(o|s,a)$ (or $O(s,a,o)$)
- POMDPs are MDPs over belief states b (distributions over S)
Example: Battleship

- In (static) battleship:
 - Belief state determined by evidence to date \((e) \)
 - Tree really over evidence sets
 - Probabilistic reasoning needed to predict new evidence given past evidence

- Solving POMDPs
 - One way: use truncated expectimax to compute approximate value of actions
 - What if you only considered bombing or one sense followed by one bomb?
 - You get the VPI agent from project 4!

More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways

- Overall, POMDPs are very (actually PSPACE-) hard

- We’ll talk more about POMDPs at the end of the course!