Machine Learning

- Up till now: how to reason or make decisions using a model

- Machine learning: how to select a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)
Classification

- In classification, we learn to predict labels (classes) for inputs

- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - ... many more

- Classification is an important commercial technology!
Bayes Nets for Classification

- One method of classification:
 - Features are observed variables
 - Y is the query variable
 - Use probabilistic inference to compute most likely Y

\[y = \arg\max_y P(y|f_1 \ldots f_n) \]

- You already know how to do this inference

Simple Classification

- Simple example: two binary features
 - This is a naïve Bayes model

\[
\begin{align*}
P(m|s, f) &= \text{direct estimate} \\
P(m|s, f) &= \frac{P(s, f|m)P(m)}{P(s, f)} \\
P(m|s, f) &= \frac{P(s|m)P(f|m)P(m)}{P(s, f)}
\end{align*}
\]

Bayes estimate (no assumptions)

Conditional independence

\[
\begin{align*}
P(m, s, f) &= P(s|m)P(f|m)P(m) \\
P(\bar{m}, s, f) &= P(s|\bar{m})P(f|\bar{m})P(\bar{m})
\end{align*}
\]
General Naïve Bayes

- A general *naïve Bayes* model:

\[P(\text{Cause}, \text{Effect}_1 \ldots \text{Effect}_n) = \]
\[P(\text{Cause}) \prod_i P(\text{Effect}_i|\text{Cause}) \]

- We only specify how each feature depends on the class
- Total number of parameters is *linear* in \(n \)

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence

\[P(C, e_1 \ldots e_n) = \]
\[\begin{array}{c}
P(c_1, e_1 \ldots e_n) \\
P(c_2, e_1 \ldots e_n) \\
\vdots \\
P(c_k, e_1 \ldots e_n)
\end{array} \]

\[\frac{P(c_1) \prod_i P(e_i|c_1)}{P(c_2) \prod_i P(e_i|c_2)} \]
\[\vdots \]
\[\frac{P(c_k) \prod_i P(e_i|c_k)}{P(e_1 \ldots e_n)} \]

- Step 2: get probability of evidence
- Step 3: renormalize
General Naïve Bayes

What do we need in order to use naïve Bayes?

- Inference (you know this part)
 - For fixed evidence, build $P(C,e)$, that is, $P(c,e)$ for each c
 - Sum out C to get $P(e)$
 - Divide to get $P(C|e)$

- Estimates of local conditional probability tables
 - $P(C)$, the prior over causes
 - $P(E|C)$ for each evidence variable
 - These probabilities are collectively called the *parameters* of the model and denoted by θ
 - These typically come from observed data: we’ll look at this now

A Digit Recognizer

- Input: pixel grids

![Pixel Grids Example]

- Output: a digit 0-9
Naïve Bayes for Digits

- Simple version:
 - One feature F_{ij} for each grid position $<i,j>$
 - Feature values are on/off based on whether intensity is more or less than 0.5
 - Input maps to feature vector, e.g.
 $$\rightarrow (F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \ldots F_{15,15} = 0)$$

- Naïve Bayes model:
 $$P(C, F_{0,0} \ldots F_{15,15}) = P(C) \prod_{i,j} P(F_{i,j}|C)$$

- What do we need to learn?

Examples: CPTs

| $P(C)$ | $P(F_{3,1} = \text{on}|C)$ | $P(F_{5,5} = \text{on}|C)$ |
|--------|--------------------------|--------------------------|
| 1 0.1 | 1 0.01 | 1 0.05 |
| 2 0.1 | 2 0.05 | 2 0.01 |
| 3 0.1 | 3 0.05 | 3 0.90 |
| 4 0.1 | 4 0.30 | 4 0.80 |
| 5 0.1 | 5 0.80 | 5 0.90 |
| 6 0.1 | 6 0.90 | 6 0.90 |
| 7 0.1 | 7 0.05 | 7 0.25 |
| 8 0.1 | 8 0.60 | 8 0.85 |
| 9 0.1 | 9 0.50 | 9 0.60 |
| 0 0.1 | 0 0.80 | 0 0.80 |
Parameter Estimation

- Estimating distribution of random variables like X or X|Y
- **Empirically:** use training data
 - For each value x, look at the *empirical rate* of that value:
 \[
 \hat{P}(x) = \frac{\text{count}(x)}{\text{total samples}}
 \]
 \[\hat{P}(r) = 1/3\]
 - This estimate maximizes the *likelihood of the data*
 \[
 L(x, \theta) = \prod_i P_\theta(x_i)
 \]
- **Elicitation:** ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

A Spam Filter

- Naïve Bayes spam filter
- **Data:**
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets
- **Classifiers**
 - Learn on the training set
 - *(Tune it on a held-out set)*
 - Test it on new emails

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS; SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY $99

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.
Naïve Bayes for Text

- **Naïve Bayes:**
 - Predict unknown cause (spam vs. ham)
 - Assume evidence (e.g. the words) to be independent

- **Generative model**

 $P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C)$

- **Tied distributions and bag-of-words**
 - Usually, each variable gets its own conditional probability distribution $P(E|C)$
 - In a bag-of-words model
 - Each position is identically distributed
 - All share the same distributions
 - Why make this assumption?

Example: Spam Filtering

- **Model:**

 $P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C)$

- **What are the parameters?**

 | $P(C)$ | $P(W|\text{spam})$ | $P(W|\text{ham})$ |
 |-------|-------------------|-------------------|
 | ham : 0.66 | the : 0.0156 | the : 0.0210 |
 | spam : 0.33 | to : 0.0153 | to : 0.0133 |
 | | and : 0.0115 | of : 0.0119 |
 | | of : 0.0095 | 2002: 0.0110 |
 | | you : 0.0093 | with: 0.0108 |
 | | a : 0.0086 | from: 0.0107 |
 | | with: 0.0080 | and : 0.0105 |
 | | from: 0.0075 | a : 0.0100 |
 | | ... | ... |

- **Where do these tables come from?**
Spam Example

| Word (prior) | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|--------------|-----------|---------|----------|---------|

\[P(\text{spam} \mid w) = 98.9 \]

Example: Overfitting

\[
\begin{align*}
P(\text{features, } C = 2) & \quad P(\text{features, } C = 3) \\
P(\text{on} \mid C = 2) &= 0.8 & P(\text{on} \mid C = 3) &= 0.8 \\
P(\text{on} \mid C = 2) &= 0.1 & P(\text{on} \mid C = 3) &= 0.9 \\
P(\text{off} \mid C = 2) &= 0.1 & P(\text{off} \mid C = 3) &= 0.7 \\
P(\text{on} \mid C = 2) &= 0.01 & P(\text{on} \mid C = 3) &= 0.0 \\
\end{align*}
\]

2 wins!!
Example: Spam Filtering

- Raw probabilities don’t affect the posteriors; relative probabilities (odds ratios) do:

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

south-west	inf	screens	inf
nation	inf	minute	inf
morally	inf	guaranteed	inf
nicely	inf	$205.00	inf
extent	inf	delivery	inf
seriously	inf	signature	inf
...			

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Unlikely that every occurrence of “minute” is 100% spam
 - Unlikely that every occurrence of “seriously” is 100% ham
 - What about all the words that don’t occur in the training set?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates
Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for \(P(\text{heads}) \)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

Relative frequencies are the maximum likelihood estimates

\[
\theta_{ML} = \arg \max_{\theta} P(X | \theta) = \arg \max_{\theta} \prod_i P_{\theta}(X_i)
\]

\[
P(x) = \frac{\text{count}(x)}{\text{total samples}}
\]

In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

\[
\theta_{MAP} = \arg \max_{\theta} P(\theta | X) = \arg \max_{\theta} P(X | \theta) P(\theta) / P(X)
\]

\[
= \arg \max_{\theta} P(X | \theta) P(\theta)
\]
Estimation: Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

\[P_{LAP}(x) = \frac{c(x) + 1}{\sum_x [c(x) + 1]} \]

\[P_{ML}(X) = \]

\[P_{LAP}(X) = \]

- Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome \(k \) extra times

\[P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|} \]

\[P_{LAP,0}(X) = \]

\[P_{LAP,1}(X) = \]

\[P_{LAP,100}(X) = \]

- What's Laplace with \(k = 0 \)?
- \(k \) is the strength of the prior

- Laplace for conditionals:
 - Smooth each condition independently:

\[P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|} \]
Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for $P(X|Y)$:
 - When $|X|$ is very large
 - When $|Y|$ is very large

- Another option: linear interpolation
 - Also get $P(X)$ from the data
 - Make sure the estimate of $P(X|Y)$ isn’t too different from $P(X)$

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)$$

- What if α is 0? 1?

- For even better ways to estimate parameters, as well as details of the math see cs281a, cs294

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

| Term | $P(W|ham)$/$P(W|spam)$ | $P(W|spam)$/$P(W|ham)$ |
|----------|------------------------|------------------------|
| helvetica | 11.4 | 28.8 |
| seems | 10.8 | 28.4 |
| group | 10.2 | 27.2 |
| ago | 8.4 | 26.9 |
| areas | 8.3 | 26.5 |
| ... | | ... |

Do these make more sense?
Tuning on Held-Out Data

- Now we've got two kinds of unknowns
 - Parameters: the probabilities $P(Y|X)$, $P(Y)$
 - Hyperparameters, like the amount of smoothing to do: k, α

- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First task: get a baseline
 - Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is

- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed

- For real research, usually use previous work as a (strong) baseline
Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label
 \[\text{confidence}(x) = \arg \max_y P(y|x) \]
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct

- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What's the value of calibration?

Errors, and What to Do

- Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

... To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

15
What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model

- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities

- The naïve Bayes assumption makes all effects independent given the cause

- We can build classifiers out of a naïve Bayes model using training data

- Smoothing estimates is important in real systems

- Classifier confidences are useful, when you can get them