Machine Learning

- Up till now: how to reason or make decisions using a model
- Machine learning: how to select a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Classification

- In classification, we learn to predict labels (classes) for inputs
- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - ... many more
- Classification is an important commercial technology!

Bayes Nets for Classification

- One method of classification:
 - Features are observed variables
 - Y is the query variable
 - Use probabilistic inference to compute most likely Y

 \[y = \arg \max_y \ P(y|f_1 \ldots f_n) \]

- You already know how to do this inference

Simple Classification

- Simple example: two binary features
 - This is a naïve Bayes model

\[
\begin{align*}
P(m|s, f) & = \frac{P(s, f|m)P(m)}{P(s, f)} & \text{direct estimate} \\
P(m|s, f) & = \frac{P(s|m)P(f|m)P(m)}{P(s, f)} & \text{Bayes estimate (no assumptions)} \\
\end{align*}
\]

\[
\begin{align*}
P(m, s, f) & = P(s|m)P(f|m)P(m) \\
P(\bar{m}, s, f) & = P(s|\bar{m})P(f|\bar{m})P(\bar{m}) \\
\end{align*}
\]
General Naïve Bayes

- A general naïve Bayes model:

\[P(\text{Cause, Effect}_1 \ldots \text{Effect}_n) = \frac{P(\text{Cause}) \prod P(\text{Effect}_i | \text{Cause})}{P(\text{Effect}_1 | \text{Cause}) \ldots P(\text{Effect}_n)} \]

\[|C| \times |E|^n \text{ parameters} \]

- We only specify how each feature depends on the class
- Total number of parameters is linear in n

General Naïve Bayes

- What do we need in order to use naïve Bayes?
 - Inference (you know this part)
 - For fixed evidence, build \(P(C, e) \), that is, \(P(c, e) \) for each \(c \)
 - Sum out \(C \) to get \(P(e) \)
 - Divide to get \(P(C | e) \)
 - Estimates of local conditional probability tables
 - \(P(C) \), the prior over causes
 - \(P(E | C) \) for each evidence variable
 - These probabilities are collectively called the parameters of the model and denoted by \(\theta \)
 - These typically come from observed data: we'll look at this now

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence
 \[P(C, e_1 \ldots e_n) = P(c_1, e_1 \ldots e_n) \cdot \frac{P(c_2)}{P(c_1)} \cdot \frac{P(e_2 | c_2)}{P(e_2 | c_1)} \cdot \ldots \cdot \frac{P(e_n | c_n)}{P(e_n | c_{n-1})} \]
 \[\frac{P(c_n)}{P(e_1 \ldots e_n)} \]
 - Step 2: get probability of evidence
 - Step 3: renormalize

A Digit Recognizer

- Input: pixel grids
- Output: a digit 0-9

Naïve Bayes for Digits

- Simple version:
 - One feature \(F_{i,j} \) for each grid position \(<i,j> \)
 - Feature values are on/off based on whether intensity is more or less than 0.5
 - Input maps to feature vector, e.g.

\[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \]

- Naïve Bayes model:

\[P(C, F_{0,0} \ldots F_{15,15}) = P(C) \prod_{i,j} P(F_{i,j} | C) \]

- What do we need to learn?

Examples: CPTs
Parameter Estimation

- Estimating distribution of random variables like \(X \) or \(X|Y \)
- Empirically: use training data
 - For each value \(x \), look at the empirical rate of that value:
 \[
 \hat{p}(x) = \frac{\text{count}(x)}{\text{total samples}}
 \]
 - This estimate maximizes the likelihood of the data
 \[
 L(x, \theta) = \prod \hat{p}(x_i^n)
 \]
- Elicitation: ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

Naive Bayes for Text

- Naive Bayes:
 - Predict unknown cause (spam vs. ham)
 - Assume evidence (e.g. the words) to be independent
- Generative model
 \[
 P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C)
 \]
- Tied distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution \(P(E|C) \)
 - In a bag-of-words model
 - Each position is identically distributed
 - All share the same distributions
 - Why make this assumption?

Spam Example

| Word | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|------|----------|----------|----------|---------|
| prior| 0.33333 | 0.66666 | -1.1 | -0.4 |

\[P(\text{spam} | w) = 98.9 \]

A Spam Filter

- Naïve Bayes spam filter
- Data:
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets
- Classifiers
 - Learn on the training set
 - (Tune it on a held-out set)
 - Test it on new emails

Example: Spam Filtering

- Model:
 \[
 P(C, W_1 \ldots W_n) = P(C) \prod_i P(W_i|C)
 \]
- What are the parameters?
 \[
 P(C) \quad P(W|\text{spam}) \quad P(W|\text{ham})
 \]
 - ham: 0.33
 - spam: 0.66
 - to: 0.0153
 - and: 0.0115
 - you: 0.0093
 - with: 0.0086
 - from: 0.0075
 - a: 0.0100

Example: Overfitting

\[2 \text{ wins!!} \]
Example: Spam Filtering

- Raw probabilities don’t affect the posteriors; relative probabilities (odds ratios) do:

\[
\begin{align*}
P(W|\text{ham}) & \quad P(W|\text{spam}) \\
P(W|\text{ham}) & \quad P(W|\text{ham})
\end{align*}
\]

<table>
<thead>
<tr>
<th>Word</th>
<th>ham</th>
<th>spam</th>
</tr>
</thead>
<tbody>
<tr>
<td>southwest</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>nation</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>morally</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>nicely</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>seriously</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data:
 - Unlikely that every occurrence of “minute” is 100% spam
 - Unlikely that every occurrence of “seriously” is 100% ham
 - What about all the words that don’t occur in the training set?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn’t generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for P(heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did

\[
P_{\text{LAP}}(x) = \frac{c(x) + 1}{N + |X|}
\]

- Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

- Laplace’s estimate (extended):
 - Pretend you saw every outcome k extra times

\[
P_{\text{LAP,k}}(x) = \frac{c(x) + k}{N + k|X|}
\]

- What’s Laplace with k = 0?
 - k is the strength of the prior

- Laplace for conditionals:
 - Smooth each condition independently:

\[
P_{\text{LAP,100}}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}
\]
Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for $P(X|Y)$:
 - When $|X|$ is very large
 - When $|Y|$ is very large

- Another option: linear interpolation
 - Also get $P(X)$ from the data
 - Make sure the estimate of $P(X|Y)$ isn’t too different from $P(X)$

\[P_{LIN}(x|y) = \alpha P(x|y) + (1 - \alpha) P(x) \]

- What if α is 0? 1?

- For even better ways to estimate parameters, as well as details of the math see cs281a, cs294

Real NB: Smoothing

- For real classification problems, smoothing is critical

- New odds ratios:

| | $P(W|\text{ham})$ | $P(W|\text{spam})$ |
|------|-------------------|-------------------|
| helvetica | 11.4 | 28.8 |
| seems | 10.8 | 28.4 |
| group | 10.2 | 27.2 |
| ago | 8.4 | 26.9 |
| areas | 8.3 | 26.5 |
| ... | ... | ... |

Do these make more sense?

Tuning on Held-Out Data

- Now we’ve got two kinds of unknowns
 - Parameters: the probabilities $P(Y|X)$, $P(Y)$
 - Hyperparameters, like the amount of smoothing to do: α, ν

- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First task: get a baseline
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is

- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed

- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label

\[\text{confidence}(x) = \arg \max P(y|x) \]

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What’s the value of calibration?

Errors, and What to Do

- Examples of errors

What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption makes all effects independent given the cause
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them