Feature Extractors

- A feature extractor maps inputs to feature vectors

```
Dear Sir.
First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret.
```

```
W=dear : 1
W=sir  : 1
W=this : 2
...
W=wish : 0
...
MISSPELLED : 2
NAMELESS : 1
ALLCAPS : 0
NUM_URLS : 0
...
```

- Many classifiers take feature vectors as inputs
- Feature vectors usually very sparse, use sparse encodings (i.e. only represent non-zero keys)
The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Try to classify

$$c = \arg \max_c \ w_c \cdot f(x)$$

$$= \arg \max_c \ \sum_i w_{c,i} \cdot f_i(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_c = w_c - f(x)$$

$$w_{c^*} = w_{c^*} + f(x)$$

Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:

$$1 = \langle 0.0 \ 0.0 \ 0.3 \ 0.8 \ 0.7 \ 0.1 \ldots 0.0 \rangle$$

- What's the similarity function?
 - Dot product of two images vectors?

$$\text{sim}(x, y) = x \cdot y = \sum_i x_i y_i$$

- Usually normalize vectors so $||x|| = 1$
- $\min = 0$ (when?), $\max = 1$ (when?)
Basic Similarity

- Many similarities based on feature dot products:
 \[\text{sim}(x, y) = f(x) \cdot f(y) = \sum_i f_i(x) f_i(y) \]

- If features are just the pixels:
 \[\text{sim}(x, y) = x \cdot y = \sum_i x_i y_i \]

- Note: not all similarities are of this form

Invariant Metrics

- Better distances use knowledge about vision
- Invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness…
 - E.g:
 - 16 x 16 = 256 pixels; a point in 256-dim space
 - Small similarity in \(R^{256} \) (why?)
 - How to incorporate invariance into similarities?

This and next few slides adapted from Xiao Hu, UIUC
Rotation Invariant Metrics

- Each example is now a curve in \mathbb{R}^{256}
- Rotation invariant similarity:
 \[s' = \max \, s(r(3), \, r(3)) \]
- E.g. highest similarity between images’ rotation lines

Template Deformation

- Deformable templates:
 - An “ideal” version of each category
 - Best-fit to image using min variance
 - Cost for high distortion of template
 - Cost for image points being far from distorted template
- Used in many commercial digit recognizers

Examples from [Hastie 94]
A Tale of Two Approaches…

- Nearest neighbor-like approaches
 - Can use fancy kernels (similarity functions)
 - Don’t actually get to do explicit learning

- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can’t use fancy kernels (why not?)
 - Or can you? Let’s find out!

The Perceptron, Again

- Start with zero weights
- Pick up training instances one by one
- Try to classify

\[
\begin{align*}
 c &= \arg \max_c \ w_c \cdot f(x) \\
 &= \arg \max_c \ \sum_i w_{c,i} \cdot f_i(x)
\end{align*}
\]

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

\[
\begin{align*}
 w_c &= w_c - f(x) \\
 w_{c^*} &= w_{c^*} + f(x)
\end{align*}
\]
Perceptron Weights

- What is the final value of a weight w_c?
 - Can it be any real vector?
 - No! It's built by adding up inputs.

\[
w_c = 0 + f(x_1) - f(x_5) + \ldots
\]

\[
w_c = \sum_i \alpha_{i,c} f(x_i)
\]

- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

\[
\alpha_c = \langle \alpha_{1,c}, \alpha_{2,c}, \ldots, \alpha_{n,c} \rangle
\]

Dual Perceptron

- How to classify a new example x?

\[
\text{score}(c, x) = w_c \cdot f(x)
\]

\[
= \left(\sum_i \alpha_{i,c} f(x_i) \right) \cdot f(x)
\]

\[
= \sum_i \alpha_{i,c} (f(x_i) \cdot f(x))
\]

\[
= \sum_i \alpha_{i,c} K(x_i, x)
\]

- If someone tells us the value of K for each pair of examples, never need to build the weight vectors!
Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify x_n,
 \[c = \arg \max_c \sum_i \alpha_{i,c} K(x_i, x) \]
- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise score of right class (for this instance)

\[
\begin{align*}
\alpha_{c,n} &= \alpha_{c,n} - 1 \\
\alpha_{c^*,n} &= \alpha_{c^*,n} + 1 \\
w_c &= w_c - f(x) \\
w_{c^*} &= w_{c^*} + f(x)
\end{align*}
\]

Kernelized Perceptron

- If we had a black box (kernel) which told us the dot product of two examples x and y:
 - Could work entirely with the dual representation
 - No need to ever take dot products ("kernel trick")

\[
\text{score}(c, x) = w_c \cdot f(x) = \sum_i \alpha_{i,c} K(x_i, x)
\]

- Like nearest neighbor – work with black-box similarities
- Downside: slow if many examples get nonzero alpha
Kernelized Perceptron Structure

\[\sum = \text{score}(c, x) \]
\[\lambda_i = \alpha_{c,i} \]

Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- “Kernel trick”: we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).
Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

\[
\text{mistakes} < \frac{1}{\delta^2}
\]

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:

- But what are we going to do if the dataset is just too hard?

- How about… mapping data to a higher-dimensional space:

This and next few slides adapted from Ray Mooney, UT
Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

$$\Phi: x \rightarrow \Phi(x)$$

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back

- Linear kernel:
 $$K(x, x') = x' \cdot x' = \sum_i x_i x'_i$$

- Quadratic kernel:
 $$K(x, x') = (x \cdot x' + 1)^2$$
 $$= \sum_{i,j} x_i x_j x'_i x'_j + 2 \sum_i x_i x'_i + 1$$

- RBF: infinite dimensional representation
 $$K(x, x') = \exp(-||x - x'||^2)$$

- Discrete kernels: e.g. string kernels
Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data (or can get it)

Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
 - Useful when don’t know what you’re looking for
 - Requires data, but no labels
 - Often get gibberish
Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

What could “similar” mean?
- One option: small (squared) Euclidean distance

\[\text{dist}(x, y) = (x - y)^T(x - y) = \sum_i (x_i - y_i)^2 \]

K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points’ assignments change
K-Means Example

- Consider the total distance to the means:
 \[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]

- Each iteration reduces \(\phi \)

- Two stages each iteration:
 - Update assignments: fix means \(c \), change assignments \(a \)
 - Update means: fix assignments \(a \), change means \(c \)
Phase I: Update Assignments

- For each point, re-assign to closest mean:
 \[a_i = \arg\min_k \text{dist}(x_i, c_k) \]

- Can only decrease total distance \(\phi \! \):
 \[
 \phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i})
 \]

Phase II: Update Means

- Move each mean to the average of its assigned points:
 \[
 c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i=k} x_i
 \]

- Also can only decrease total distance… (Why?)

- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean
Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
- Various schemes for preventing this kind of thing:
 - variance-based split / merge, initialization heuristics

K-Means Getting Stuck

- A local optimum:

Why doesn’t this work out like the earlier example, with the purple taking over half the blue?
K-Means Questions

- Will K-means converge?
 - To a global optimum?

- Will it always find the true patterns in the data?
 - If the patterns are very very clear?

- Will it find something interesting?

- Do people ever use it?

- How many clusters to pick?

Clustering for Segmentation

- Quick taste of a simple vision algorithm

- Idea: break images into manageable regions for visual processing (object recognition, activity detection, etc.)

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/
Representing Pixels

- Basic representation of pixels:
 - 3 dimensional color vector \(<r, g, b>\)
 - Ranges: \(r, g, b\) in \([0, 1]\)
 - What will happen if we cluster the pixels in an image using this representation?

- Improved representation for segmentation:
 - 5 dimensional vector \(<r, g, b, x, y>\)
 - Ranges: \(x\) in \([0, M]\), \(y\) in \([0, N]\)
 - Bigger \(M, N\) makes position more important
 - How does this change the similarities?

- Note: real vision systems use more sophisticated encodings which can capture intensity, texture, shape, and so on.

K-Means Segmentation

- Results depend on initialization!
 - Why?

- Note: best systems use graph segmentation algorithms
Other Uses of K-Means

- Speech recognition: can use to quantize wave slices into a small number of types (SOTA: work with multivariate continuous features)
- Document clustering: detect similar documents on the basis of shared words (SOTA: use probabilistic models which operate on topics rather than words)

Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram
How should we define "closest" for clusters with multiple elements?

- Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Distance between centroids (broken)
 - Ward's method (my pick, like k-means)
- Different choices create different clustering behaviors

Complete Link (farthest) vs. Single Link (closest)
Back to Similarity

- K-means naturally operates in Euclidean space (why?)
- Agglomerative clustering didn't require any mention of averaging
 - Can use any function which takes two instances and returns a similarity
 - Kernelized clustering: if your similarity function has the right properties, can adapt k-means too
- Kinds of similarity functions:
 - Euclidean (dot product)
 - Weighted Euclidean
 - Edit distance between strings
 - Anything else?

Collaborative Filtering

- Ever wonder how online merchants decide what products to recommend to you?
- Simplest idea: recommend the most popular items to everyone
 - Not entirely crazy! (Why)
 - Can do better if you know something about the customer (e.g. what they’ve bought)
- Better idea: recommend items that similar customers bought
 - A popular technique: collaborative filtering
 - Define a similarity function over customers (how?)
 - Look at purchases made by people with high similarity
 - Trade-off: relevance of comparison set vs confidence in predictions
 - How can this go wrong?