Feature Extractors

- A feature extractor maps inputs to feature vectors

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret.

<table>
<thead>
<tr>
<th>Word</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>misspelled</td>
<td>2</td>
</tr>
<tr>
<td>nameless</td>
<td>1</td>
</tr>
<tr>
<td>all_caps</td>
<td>0</td>
</tr>
<tr>
<td>num_url</td>
<td>0</td>
</tr>
</tbody>
</table>

The Perceptron Update Rule

- Start with zero weights
- Pick up training instances one by one
- Try to classify

\[
c = \arg \max_w w_c \cdot f(x) = \max_w \sum_i w_{ci} f_i(x)
\]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

\[
w_c = w_c - f(x)
\]
\[
w_{r*} = w_{r*} + f(x)
\]

Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:

\[
1 = (0.0, 0.0, 0.3, 0.8, 0.7, 0.1, \ldots, 0.0)
\]

- What’s the similarity function?

\[
sim(x, y) = x \cdot y = \sum_i x_i y_i
\]
- Usually normalize vectors so \(||x|| = 1 \)
- min = 0 (when?), max = 1 (when?)

Basic Similarity

- Many similarities based on feature dot products:

\[
sim(x, y) = f(x) \cdot f(y) = \sum_i f_i(x) f_i(y)
\]
- If features are just the pixels:

\[
sim(x, y) = x \cdot y = \sum_i x_i y_i
\]
- Note: not all similarities are of this form

Invariant Metrics

- Better distances use knowledge about vision
- Invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness…
 - E.g.
 - 16 x 16 = 256 pixels; a point in 256-diim space
 - Small similarity in \(R^{256} \) (why?)
 - How to incorporate invariance into similarities?

This and next few slides adapted from Xiao Hu, UIUC
Rotation Invariant Metrics

- Each example is now a curve in \mathbb{R}^{256}
- Rotation invariant similarity:
 \[s' = \max s(\mathbf{r}(\mathbf{3}), \mathbf{r}(\mathbf{3})) \]
- E.g. highest similarity between images’ rotation lines

Template Deformation

- Deformable templates:
 - An “ideal” version of each category
 - Best-fit to image using min variance
 - Cost for high distortion of template
 - Cost for image points being far from distorted template
- Used in many commercial digit recognizers

A Tale of Two Approaches…

- Nearest neighbor-like approaches
 - Can use fancy kernels (similarity functions)
 - Don’t actually get to do explicit learning

- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can’t use fancy kernels (why not?)
 - Or can you? Let’s find out!

The Perceptron, Again

- Start with zero weights
- Pick up training instances one by one
- Try to classify
 \[z = \arg \max_c w_c \cdot f(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_i = w_i - f(x) \]
 \[w_{i,c} = w_{i,c} + f(x) \]

Perceptron Weights

- What is the final value of a weight w_c?
 - Can it be any real vector?
 - No! It’s built by adding up inputs.
 \[w_c = 0 + f(x_1) - f(x_5) + \ldots \]
 \[w_c = \sum_i \alpha_{i,c} f(x_i) \]
- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)
 \[\alpha_c = \langle \alpha_{1,c}, \alpha_{2,c}, \ldots, \alpha_{n,c} \rangle \]

Dual Perceptron

- How to classify a new example x?
 \[\text{score}(c, x) = w_c \cdot f(x) \]
 \[= \left(\sum_i \alpha_{i,c} f(x_i) \right) \cdot f(x) \]
 \[= \sum_i \alpha_{i,c} f(x_i) \cdot f(x) \]
 \[= \sum_i \alpha_{i,c} K(x_i, x) \]
- If someone tells us the value of K for each pair of examples, never need to build the weight vectors!
Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify x_i: $z = \text{arg max}_c \sum \alpha_{i,c} K(x_i, x)$
 - If correct, no change!
 - If wrong: lower count of wrong class (for this instance), raise score of right class (for this instance)

$$\begin{align*}
\alpha_{c,n} &= \alpha_{c,n} - 1 \\
\alpha_{c^*,n} &= \alpha_{c^*,n} + 1 \\
\omega_c &= \omega_c - f(x) \\
\omega_{c^*} &= \omega_{c^*} + f(x)
\end{align*}$$

Kernelized Perceptron

- If we had a black box (kernel) which told us the dot product of two examples x and y: $K(x, y)$
 - Could work entirely with the dual representation
 - No need to ever take dot products (“kernel trick”)

$$\text{score}(c, x) = \omega_c \cdot f(x) = \sum_i \alpha_{i,c} K(x_i, x)$$

- Like nearest neighbor – work with black-box similarities
- Downside: slow if many examples get nonzero alpha

Kernelized Perceptron Structure

Kernelized Perceptron

Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- “Kernel trick”: we can substitute any similarity function in place of the dot product
- Lets us learn new kinds of hypothesis

* Fine print: If your kernel doesn’t satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability
 $$\text{mistakes} < \frac{1}{\lambda^2}$$

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:
- But what are we going to do if the dataset is just too hard?
- How about… mapping data to a higher-dimensional space:
Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back:
 - Linear kernel: \(K(x, x') = x' \cdot x' = \sum x_i x'_i \)
 - Quadratic kernel: \(K(x, x') = (x \cdot x' + 1)^2 = \sum x_i x'_i + 2 \sum x_i x'_i + 1 \)
 - RBF: infinite dimensional representation \(K(x, x') = \exp(-||x - x'||^2) \)
 - Discrete kernels: e.g. string kernels

Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data (or can get it)

Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
 - Useful when don’t know what you’re looking for
 - Requires data, but no labels
 - Often get gibberish

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns
- What could “similar” mean?
 - One option: small (squared) Euclidean distance

\[\text{dist}(x, y) = (x - y)^T (x - y) = \sum (x_i - y_i)^2 \]

K-Means

- An iterative clustering algorithm
- Pick K random points as cluster centers (means)
- Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
- Stop when no points’ assignments change
K-Means Example

K-Means as Optimization
- Consider the total distance to the means:
 \[\phi(x_i, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]
- Each iteration reduces \(\phi \)
- Two stages each iteration:
 - Update assignments: fix means \(c_i \), change assignments \(a_i \)
 - Update means: fix assignments \(a_i \), change means \(c_i \)

Phase I: Update Assignments
- For each point, re-assign to closest mean:
 \[a_i = \arg\min_k \text{dist}(x_i, c_k) \]
- Can only decrease total distance \(\phi \)
 \[\phi(x_i, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]

Phase II: Update Means
- Move each mean to the average of its assigned points:
 \[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]
- Also can only decrease total distance… (Why?)
- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean

Initialization
- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics

K-Means Getting Stuck
- A local optimum:
 - Why doesn’t this work out like the earlier example, with the purple taking over half the blue?
K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 - If the patterns are very very clear?
- Will it find something interesting?
- Do people ever use it?
- How many clusters to pick?

Representing Pixels

- Basic representation of pixels:
 - 3 dimensional color vector \(<r, g, b>\)
 - Ranges: \(r, g, b \in [0, 1]\)
- What will happen if we cluster the pixels in an image using this representation?
- Improved representation for segmentation:
 - 5 dimensional vector \(<r, g, b, x, y>\)
 - Ranges: \(x \in [0, M]\), \(y \in [0, N]\)
 - Bigger \(M, N\) makes position more important
- How does this change the similarities?
- Note: real vision systems use more sophisticated encodings which can capture intensity, texture, shape, and so on.

Clustering for Segmentation

- Quick taste of a simple vision algorithm
- Idea: break images into manageable regions for visual processing (object recognition, activity detection, etc.)

K-Means Segmentation

- Results depend on initialization!
 - Why?
- Note: best systems use graph segmentation algorithms

Other Uses of K-Means

- Speech recognition: can use to quantize wave slices into a small number of types (SOTA: work with multivariate continuous features)
- Document clustering: detect similar documents on the basis of shared words (SOTA: use probabilistic models which operate on topics rather than words)

Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram
Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
 - Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Distance between centroids (broken)
 - Ward’s method (my pick, like k-means)
- Different choices create different clustering behaviors

Back to Similarity

- K-means naturally operates in Euclidean space (why?)
- Agglomerative clustering didn’t require any mention of averaging
 - Can use any function which takes two instances and returns a similarity
 - Kernelized clustering: if your similarity function has the right properties, can adapt k-means too
- Kinds of similarity functions:
 - Euclidian (dot product)
 - Weighted Euclidian
 - Edit distance between strings
 - Anything else?

Collaborative Filtering

- Ever wonder how online merchants decide what products to recommend to you?
- Simplest idea: recommend the most popular items to everyone
- Not entirely crazy! (Why)
- Can do better if you know something about the customer (e.g. what they’ve bought)
- Better idea: recommend items that similar customers bought
 - A popular technique: collaborative filtering
 - Define a similarity function over customers (how?)
 - Look at purchases made by people with high similarity
 - Trade-off: relevance of comparison set vs confidence in predictions
 - How can this go wrong?