Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - i.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area
Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way…
- … but it’s tricky!
Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - **Goal: learn the state values** (and maybe the model)
 - I.e., policy evaluation

- **In this case:**
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning!
Example: Direct Estimation

- **Episodes:**

 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (1,3) right -1
 - (2,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (3,3) right -1
 - (4,3) exit +100
 - (done)

 ![Demo - Optimal Policy Diagram](image)

 - $\gamma = 1$, $R = -1$

 \[
 V(1,1) \sim \frac{(92 + -106)}{2} = -7
 \]

 \[
 V(3,3) \sim \frac{(99 + 97 + -102)}{3} = 31.3
 \]
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) the first time we experience \((s,a,s') \)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)
Example: Model-Based Learning

- **Episodes:**

 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (done)
 - (3,3) exit +100
 - (done)

\[
T(<3,3>, \text{right}, <4,3>) = \frac{1}{3}
\]

\[
T(<2,3>, \text{right}, <3,3>) = \frac{2}{2}
\]
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V_0^\pi(s) = 0
\]

\[
V_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]
Sample Avg to Replace Expectation?

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- Who needs T and R? Approximate the expectation with samples (drawn from T!)

 \[
 \text{sample}_1 = R(s, a, s'_1) + \gamma V_i^\pi(s'_1)
 \]
 \[
 \text{sample}_2 = R(s, a, s'_2) + \gamma V_i^\pi(s'_2)
 \]
 \[
 \vdots
 \]
 \[
 \text{sample}_k = R(s, a, s'_k) + \gamma V_i^\pi(s'_k)
 \]

\[V_{i+1}^\pi(s) \leftarrow \sum_k \text{sample}_k \]
Model-Free Learning

- Big idea: why bother learning T?
 - Update V each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)
- Temporal difference learning (TD)
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

$$V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')]$$

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$
Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, a, s') + \gamma V^\pi(s') \right] \]

(1,1) up -1 (1,1) up -1
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1
(3,3) right -1 (3,2) up -1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done)
(4,3) exit +100
(done)

Take \(\gamma = 1, \alpha = 0.5 \)
Problems with TD Value Learning

- TD value leaning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!
Active Learning

- Full reinforcement learning
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You can choose any actions you like
 - Goal: learn the optimal policy (maybe values)

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning!
Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy

- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model
Example: Greedy ADP

- Imagine we find the lower path to the good exit first.
- Some states will never be visited following this policy from (1,1).
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy.
What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them

- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit
Q-Value Iteration

- **Value iteration:** find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
 \]

- **But Q-values are more useful!**
 - Start with $Q_0^*(s, a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[
 Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
 \]
Q-Learning

- **Learn** $Q^*(s,a)$ **values**
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:

 $$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$

 $$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

 - Incorporate the new estimate into a running average:

 $$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$
Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - But not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: learns optimal q-values regardless of action selection noise (some caveats)
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ greedy)
 - Every time step, flip a coin
 - With probability ϵ, act randomly
 - With probability $1-\epsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a')
\]

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))
\]
Q-Learning

- Q-learning produces tables of q-values:

![Q-values after 1000 episodes](image)
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again
Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!
Feature-Based Representations

- **Solution**: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - **Example features**:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:
 \[Q(s, a) \leftarrow Q(s, a) + \alpha [\text{error}] \]
 \[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]

\[R(s, a, s') = -500 \]

\[\text{error} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Linear regression

Given examples \((x_i, y_i)_{i=1...n}\)

Predict \(y_{n+1}\) given a new point \(x_{n+1}\)
Linear regression

Prediction
\[\hat{y}_i = w_0 + w_1 x_i \]

Prediction
\[\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} \]
Ordinary Least Squares (OLS)

\[\sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]
Minimizing Error

\[E(w) = \frac{1}{2} \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]

\[
\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i)
\]

\[E \leftarrow E + \alpha \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

Value update explained:

\[w_i \leftarrow w_i + \alpha \text{[error]} f_i(s, a) \]
Overfitting

Degree 15 polynomial
Policy Search
Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.
Take a Deep Breath…

- We’re done with search and planning!

- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!

- Last part of course: machine learning