Announcements

- Midterm solutions up, regrade requests by 11/13
- Midterm evaluation up, please fill out!
- P5 up, due 11/19
- No section next week
Recap: Some Simple Cases

Models

\[X_1 \rightarrow E_1 \]

Queries

\[P(X_1 | e_1) \]

\[P(X_2 | x_1) \]

\[P(X_2) \]

\[P(x_1 | e_1) = \frac{P(x_1, e_1)}{P(e_1)} \]

\[\propto_{X_1} P(x_1, e_1) \]

\[= P(x_1)P(e_1 | x_1) \]

\[P(x_2) = \sum_{x_1} P(x_1, x_2) \]

\[= \sum_{x_1} P(x_1)P(x_2 | x_1) \]
Hidden Markov Models

- An HMM is
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: $P(E|X)$
Battleship HMM

- \(P(X_1) = \text{uniform} \)
- \(P(X|X') = \text{usually move according to fixed, known patrol policy (e.g. clockwise), sometimes move in a random direction or stay in place} \)
- \(P(R_{ij}|X) = \text{as before: depends on distance from ships in x to (i,j) (really this is just one of many independent evidence variables that might be sensed)} \)

\[\begin{array}{ccc}
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
\end{array} \]

\[\begin{array}{ccc}
1/6 & 1/6 & 1/2 \\
0 & 1/6 & 0 \\
0 & 0 & 0 \\
\end{array} \]
Passage of Time

- Assume we have current belief \(P(X | \text{evidence to date}) \)

\[
B(X_t) = P(X_t | e_{1:t})
\]

- Then, after one time step passes:

\[
P(X_{t+1} | e_{1:t}) = \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})
\]

- Or, compactly:

\[
B'(X_{t+1}) = \sum_{x_t} P(X' | x) B(x_t)
\]

- Basic idea: beliefs get “pushed” through the transitions
 - With the “B” notation, we have to be careful about what time step the belief is about, and what evidence it includes
Example: Passage of Time

- As time passes, uncertainty “accumulates”

\[B'(X) = \sum_{x} P(X'|x)B(x) \]

Transition model: ships usually go clockwise.
Assume we have current belief $P(X | \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then:

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or:

$$B(X_{t+1}) \propto P(e|X)B'(X_{t+1})$$

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize
Example: Observation

- As we get observations, beliefs get reweighted, uncertainty “decreases”

\[
B(X) \propto P(e|X)B'(X)
\]

<table>
<thead>
<tr>
<th>Before observation</th>
<th>After observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 0.01 0.05 <0.01 <0.01 <0.01</td>
<td><0.01 <0.01 <0.01 <0.01 <0.01 <0.01</td>
</tr>
<tr>
<td>0.02 0.14 0.11 0.35 <0.01 <0.01</td>
<td><0.01 <0.01 <0.01 <0.01 <0.01 <0.01</td>
</tr>
<tr>
<td>0.07 0.03 0.05 <0.01 0.03 <0.01</td>
<td><0.01 <0.01 <0.01 <0.01 <0.01 <0.01</td>
</tr>
<tr>
<td>0.03 0.03 <0.01 <0.01 <0.01 <0.01</td>
<td><0.01 <0.01 <0.01 <0.01 <0.01 <0.01</td>
</tr>
</tbody>
</table>
Example HMM
Example HMM
The Forward Algorithm

- We are given evidence at each time and want to know
 \[B_t(X) = P(X_t|e_{1:t}) \]

- We can derive the following updates
 \[
P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})
 = \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
 = \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)
 = P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}, e_{1:t-1})
\]

We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end…
Belief Updates

- Every time step, we start with current $P(X | \text{evidence})$
- We update for time:

 $$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}|e_{1:t-1})$$

- We update for evidence:

 $$P(x_t|e_{1:t}) \propto_P e_t|x_t)P(x_t|e_{1:t-1})$$

- The forward algorithm does both at once (and doesn’t normalize)
- Problem: space is $|X|$ and time is $|X|^2$ per time step
Particle Filtering

- Sometimes $|X|$ is too big to use exact inference
 - $|X|$ may be too big to even store $B(X)$
 - E.g. X is continuous
 - $|X|^2$ may be too big to do updates

- Solution: approximate inference
 - Track samples of X, not all values
 - Time per step is linear in the number of samples
 - But: number needed may be large

- This is how robot localization works in practice
Particle Filtering: Time

- Each particle is moved by sampling its next position from the transition model

\[x' = \text{sample}(P(X' | x)) \]

- This is like prior sampling – samples’ frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)
Particle Filtering: Observation

- Slightly trickier:
 - We don’t sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence

\[
w(x) = P(e|x)
\]

\[
B(X) \propto P(e|X)B'(X)
\]

- Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))
Particle Filtering: Resampling

- Rather than tracking weighted samples, we resample.
- N times, we choose from our weighted sample distribution (i.e. draw with replacement).
- This is equivalent to renormalizing the distribution.
- Now the update is complete for this time step, continue with the next one.
Robot Localization

- **In robot localization:**
 - We know the map, but not the robot’s position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
 - Particle filtering is a main technique

- [DEMOS]
SLAM

- **SLAM = Simultaneous Localization And Mapping**
 - We do not know the map or our location
 - Our belief state is over maps and positions!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

- [DEMOS]

DP-SLAM, Ron Parr