CS 188: Artificial Intelligence
Fall 2008

Lecture 25: Kernels and Clustering
12/2/2008

Dan Klein – UC Berkeley
Case-Based Reasoning

- **Similarity for classification**
 - Case-based reasoning
 - Predict an instance’s label using similar instances

- **Nearest-neighbor classification**
 - 1-NN: copy the label of the most similar data point
 - K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)
 - Key issue: how to define similarity
 - Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?

- [DEMO]

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
Parametric / Non-parametric

- **Parametric models:**
 - Fixed set of parameters
 - More data means better settings

- **Non-parametric models:**
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit

- (K)NN is non-parametric
Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:
 \[\mathbf{1} = (0.0 \ 0.0 \ 0.3 \ 0.8 \ 0.7 \ 0.1 \ldots 0.0) \]

- What’s the similarity function?
 - Dot product of two images vectors?
 \[\text{sim}(x, y) = x \cdot y = \sum_i x_i y_i \]
 - Usually normalize vectors so \(|x| = 1\)
 - \(\min = 0\) (when?), \(\max = 1\) (when?)
Basic Similarity

- Many similarities based on feature dot products:
 \[\text{sim}(x, y) = f(x) \cdot f(y) = \sum_i f_i(x) f_i(y) \]

- If features are just the pixels:
 \[\text{sim}(x, y) = x \cdot y = \sum_i x_i y_i \]

- Note: not all similarities are of this form
Invariant Metrics

- Better distances use knowledge about vision
- Invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness…
 - E.g:
 - 16 x 16 = 256 pixels; a point in 256-dim space
 - Small similarity in \mathbb{R}^{256} (why?)
 - How to incorporate invariance into similarities?

This and next few slides adapted from Xiao Hu, UIUC
Rotation Invariant Metrics

- Each example is now a curve in \mathbb{R}^{256}
- Rotation invariant similarity:
 \[s' = \max s(r(\text{3}), r(\text{3})) \]
- E.g. highest similarity between images’ rotation lines
Template Deformation

- **Deformable templates:**
 - An “ideal” version of each category
 - Best-fit to image using min variance
 - Cost for high distortion of template
 - Cost for image points being far from distorted template

- **Used in many commercial digit recognizers**

Examples from [Hastie 94]
Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a rational prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data (or can get it)
Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
 - Useful when don’t know what you’re looking for
 - Requires data, but no labels
 - Often get gibberish
Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could “similar” mean?
 - One option: small (squared) Euclidean distance

\[\text{dist}(x, y) = (x - y)^T (x - y) = \sum_i (x_i - y_i)^2 \]
K-Means

- **An iterative clustering algorithm**
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points’ assignments change
K-Means Example
K-Means as Optimization

- Consider the total distance to the means:
 \[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]

- Each iteration reduces \(\phi \)

- Two stages each iteration:
 - Update assignments: fix means \(c \), change assignments \(a \)
 - Update means: fix assignments \(a \), change means \(c \)
Phase I: Update Assignments

- For each point, re-assign to closest mean:

\[a_i = \arg\min_k \text{dist}(x_i, c_k) \]

- Can only decrease total distance \(\phi \):

\[\phi(x_i, a_i, c_k) = \sum_i \text{dist}(x_i, c_{a_i}) \]
Phase II: Update Means

- Move each mean to the average of its assigned points:
 \[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]

- Also can only decrease total distance… (Why?)

- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean
Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
- Various schemes for preventing this kind of thing:
 variance-based split / merge, initialization heuristics
K-Means Getting Stuck

- A local optimum:

Why doesn't this work out like the earlier example, with the purple taking over half the blue?
K-Means Questions

- Will K-means converge?
 - To a global optimum?

- Will it always find the true patterns in the data?
 - If the patterns are very very clear?

- Will it find something interesting?

- Do people ever use it?

- How many clusters to pick?
Clustering for Segmentation

- Quick taste of a simple vision algorithm

- Idea: break images into manageable regions for visual processing (object recognition, activity detection, etc.)

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/
Representing Pixels

- Basic representation of pixels:
 - 3 dimensional color vector \(<r, g, b>\)
 - Ranges: \(r, g, b\) in \([0, 1]\)
 - What will happen if we cluster the pixels in an image using this representation?

- Improved representation for segmentation:
 - 5 dimensional vector \(<r, g, b, x, y>\)
 - Ranges: \(x\) in \([0, M]\), \(y\) in \([0, N]\)
 - Bigger \(M, N\) makes position more important
 - How does this change the similarities?

- Note: real vision systems use more sophisticated encodings which can capture intensity, texture, shape, and so on.
K-Means Segmentation

- Results depend on initialization!
 - Why?

- Note: best systems use graph segmentation algorithms
Other Uses of K-Means

- Speech recognition: can use to quantize wave slices into a small number of types (SOTA: work with multivariate continuous features)

- Document clustering: detect similar documents on the basis of shared words (SOTA: use probabilistic models which operate on topics rather than words)
Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters

- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left

- Produces not one clustering, but a family of clusterings represented by a dendrogram
Agglomerative Clustering

- How should we define “closest” for clusters with multiple elements?

- Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Distance between centroids (broken)
 - Ward’s method (my pick, like k-means)

- Different choices create different clustering behaviors
Collaborative Filtering

- Ever wonder how online merchants decide what products to recommend to you?
- Simplest idea: recommend the most popular items to everyone
 - Not entirely crazy! (Why)
 - Can do better if you know something about the customer (e.g. what they've bought)
- Better idea: recommend items that similar customers bought
 - A popular technique: collaborative filtering
 - Define a similarity function over customers (how?)
 - Look at purchases made by people with high similarity
 - Trade-off: relevance of comparison set vs confidence in predictions
 - How can this go wrong?