Announcements

- P0 / P1 in glookup
 - If you have no entry, etc, email staff list!
 - If you have questions, see one of us or email list.

- P3: MDPs and Reinforcement Learning is up!

- W2: MDPs, RL, and Probability up before next class
Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive Learning

- Simplified task
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values
 - … what policy evaluation did

- In this case:
 - Learner "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens…
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

$$V^\pi_0(s) = 0$$

$$V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_i(s')]$$

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of $T(s,a,s')$
 - Discover $R(s,a,s')$ when we experience (s,a,s')

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_i(s')]$$
Example: Model-Based Learning

- **Episodes:**
 1. (1,1) up -1
 2. (1,2) up -1
 3. (1,2) up -1
 4. (1,3) right -1
 5. (1,3) right -1
 6. (2,3) right -1
 7. (2,3) right -1
 8. (3,3) right -1
 9. (3,3) right -1
 10. (3,2) up -1
 11. (3,2) up -1
 12. (4,2) exit -100
 13. (4,3) exit +100
 14. (done)

\[T(<3,3>, \text{right}, <4,3>) = \frac{1}{3} \]
\[T(<2,3>, \text{right}, <3,3>) = \frac{2}{2} \]

Model-Free Learning

- Want to compute an expectation weighted by \(P(x) \):
 \[E[f(x)] = \sum_x P(x) f(x) \]
- Model-based: estimate \(P(x) \) from samples, compute expectation
 \[x_i \sim P(x) \]
 \[\hat{P}(x) = \text{count}(x)/k \]
 \[E[f(x)] \approx \sum_x \hat{P}(x) f(x) \]
- Model-free: estimate expectation directly from samples
 \[x_i \sim P(x) \]
 \[E[f(x)] \approx \frac{1}{k} \sum_i f(x_i) \]

- Why does this work? Because samples appear with the right frequencies!
Example: Direct Estimation

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (1,3) right -1
 - (2,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (4,3) exit +100
 - (done)

\[V(2,3) \approx \frac{(96 + -103)}{2} = -3.5 \]

\[V(3,3) \approx \frac{(99 + 97 + -102)}{3} = 31.3 \]

Sample-Based Policy Evaluation?

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- Who needs T and R? Approximate the expectation with samples (drawn from T!)

\[sample_1 = R(s, \pi(s), s'_1) + \gamma V_i^\pi(s'_1) \]
\[sample_2 = R(s, \pi(s), s'_2) + \gamma V_i^\pi(s'_2) \]
\[\ldots \]
\[sample_k = R(s, \pi(s), s'_k) + \gamma V_i^\pi(s'_k) \]

\[V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_i sample_i \]

Almost! But we only actually make progress when we move to \(i+1 \).
Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of $V(s)$:

$$\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + (\alpha) \text{sample}$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))$$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}$$

 - Forgets about the past (distant past values were wrong anyway)
 - Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

- Decreasing learning rate can give converging averages
Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

(1,1) up -1 (1,1) up -1
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1
(3,3) right -1 (3,2) up -1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done)
(4,3) exit +100 (done)

Take \(\gamma = 1, \alpha = 0.5 \)

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!
Active Learning

- Full reinforcement learning
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You can choose any actions you like
 - Goal: learn the optimal policy
 - ... what value iteration did!

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_i^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with $Q_i^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 $$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$
Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 $$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$
 $$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s,a) \leftarrow (1 - \alpha) Q(s,a) + \alpha [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability $1-\varepsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

$$Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_{i}(s', a')$$

$$Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_{i}(s', a'), N(s', a'))$$
Q-Learning

- Q-learning produces tables of q-values:

![Q-values after 1000 episodes]

The Story So Far: MDPs and RL

Things we know how to do:

- We can solve small MDPs exactly, offline
- We can estimate values $V^\pi(s)$ directly for a fixed policy π.
- We can estimate $Q^*(s,a)$ for the optimal policy while executing an exploration policy

Techniques:

- Value and policy iteration
- Temporal difference learning
- Q-learning
 - Exploratory action selection
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:
 - In naïve q learning, we know nothing about this state or its q states:
 - Or even this one!
Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1/(\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1f_1(s) + w_2f_2(s) + \ldots + w_nf_n(s)$$

$$Q(s, a) = w_1f_1(s, a) + w_2f_2(s, a) + \ldots + w_nf_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:
 \[Q(s, a) \leftarrow Q(s, a) + \alpha [\text{error}] \]
 \[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- Formal justification: online least squares

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]
\[Q(s, a) = +1 \]
\[R(s, a, s') = -500 \]
\[\text{error} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]