Reinforcement Learning

- Still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)
- New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Model-Free Learning

- Model-free (temporal difference) learning
- Experience world through episodes
 \((s,a,r,s',s'',s''',\ldots) \)
- Update estimates each transition \((s,a,r,s') \)
- Over time, updates will mimic Bellman updates

Q-Value Iteration (model-based, requires known MDP)

\[
Q_{t+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_t(s',a') \right]
\]

Q-Learning (model-free, requires only experienced transitions)

\[
Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') \right]
\]

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough (i.e. visit each q-state many times)
 - If you make the learning rate small enough
 - Basically doesn’t matter how you select actions (!)
- Off-policy learning: learns optimal q-values, not the values of the policy you are following
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Regret: expected gap between rewards during learning and rewards from optimal action
 - Q-learning with random actions will converge to optimal values, but possibly very slowly, and will get low rewards on the way
 - Results will be optimal but regret will be large
 - How to make regret small?

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better ideas: explore areas whose badness is not (yet) established, explore less over time
- One way: exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

\[
Q_{t+1}(s, a) = r(s, a, s') + \gamma \max_{a'} Q_t(s', a')
\]

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:
- In naïve q learning, we know nothing about this state or its q states:
- Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)?
 - Is Pacman in a tunnel? (0/1)
 - ... etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear q-functions:
 \[\text{transition} = (s, a, r, s') \]
 \[\text{difference} = r + \gamma \max Q(s', a') - Q(s, a) \]
 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \]
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, disprefer all states with that state’s features
- Formal justification: online least squares

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{dot}}(s, a) - 1.0 f_{\text{goal}}(s, a) \]
\[f_{\text{dot}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{goal}}(s, \text{NORTH}) = 1.0 \]
\[Q(s, a) = +1 \]
\[R(s, a, s') = -500 \]
\[\text{correction} = -501 \]
\[w_{\text{dot}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{goal}} \leftarrow -1.0 + \alpha [-501] 1.0 \]
\[Q(s, a) = 3.0 f_{\text{dot}}(s, a) - 3.0 f_{\text{goal}}(s, a) \]

Linear Regression

\[\hat{y} = w_0 + w_1 f_1(x) \]
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]

Ordinary Least Squares (OLS)

\[\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2 \]

Minimizing Error

Imagine we had only one point \(x \) with features \(f(x) \):

\[\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2 \]
\[\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x) \]
\[w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x) \]

Approximate q update explained:

\[w_m \leftarrow w_m + \alpha \left[r + \gamma \max Q(s', a') - Q(s, a) \right] f_m(s, a) \]
Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 We’ll see this distinction between modeling and prediction again later in the course

Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

Advanced policy search:
 - Write a stochastic (soft) policy:
 \[\pi_W(s) \propto e^{\sum_i w_i f_i(s,a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, optional material)
 - Take uphill steps, recalculate derivatives, etc.

We’re done with search and planning!

Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - ... lots more!

Last part of course: machine learning