CS 188: Artificial Intelligence
Fall 2009

Lecture 13: Probability
10/8/2009

Dan Klein – UC Berkeley

Announcements

- **Upcoming**
 - P3 Due 10/12
 - W2 Due 10/15
 - Midterm in evening of 10/22

- **Review sessions:**
 - Probability review: Friday 12-2pm in 306 Soda
 - Midterm review: on web page when confirmed
Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes’ Rule
 - Inference
 - Independence

- You’ll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

- Sensors are noisy, but we know $P(\text{Color} | \text{Distance})$

| $P(\text{red} | 3)$ | $P(\text{orange} | 3)$ | $P(\text{yellow} | 3)$ | $P(\text{green} | 3)$ |
|-------------------|-------------------|-------------------|-------------------|
| 0.05 | 0.15 | 0.5 | 0.3 |
Uncertainty

- **General situation:**
 - **Evidence**: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - **Hidden variables**: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - **Model**: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?

- We denote random variables with capital letters

- Like variables in a CSP, random variables have domains
 - R in \{true, false\} (sometimes write as \{+r, −r\})
 - D in \([0, \infty)\)
 - L in possible locations, maybe \{(0,0), (0,1), \ldots\}
Probability Distributions

- Unobserved random variables have distributions

 \[
 P(T) \quad P(W)
 \]

 \[
 \begin{array}{c|c}
 T & P \\
 \hline
 \text{warm} & 0.5 \\
 \text{cold} & 0.5 \\
 \end{array}
 \quad
 \begin{array}{c|c}
 W & P \\
 \hline
 \text{sun} & 0.6 \\
 \text{rain} & 0.1 \\
 \text{fog} & 0.3 \\
 \text{meteor} & 0.0 \\
 \end{array}
 \]

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

 \[P(W = \text{rain}) = 0.1 \quad P(\text{rain}) = 0.1\]

- Must have: \(\forall x \ P(x) \geq 0\) \[\sum_x P(x) = 1\]

Joint Distributions

- A joint distribution over a set of random variables: \(X_1, X_2, \ldots X_n\) specifies a real number for each assignment (or outcome):

 \[P(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n)\]

 \[P(x_1, x_2, \ldots x_n)\]

- Size of distribution if \(n\) variables with domain sizes \(d\)?

- Must obey:

 \[P(x_1, x_2, \ldots x_n) \geq 0\]

 \[\sum_{(x_1, x_2, \ldots x_n)} P(x_1, x_2, \ldots x_n) = 1\]

- For all but the smallest distributions, impractical to write out
Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

<table>
<thead>
<tr>
<th>Distribution over T,W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>cold</td>
</tr>
<tr>
<td>cold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraint over T,W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>cold</td>
</tr>
<tr>
<td>cold</td>
</tr>
</tbody>
</table>

Events

- An event is a set \(E \) of outcomes
 \[P(E) = \sum_{(x_1 \ldots x_n) \in E} P(x_1 \ldots x_n) \]
- From a joint distribution, we can calculate the probability of any event
 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR sunny?

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>cold</td>
</tr>
<tr>
<td>cold</td>
</tr>
</tbody>
</table>
Marginal Distributions

Marginal distributions are sub-tables which eliminate variables. Marginalization (summing out): Combine collapsed rows by adding:

\[
P(T) = \sum_s P(t, s)
\]

\[
P(W) = \sum_t P(t, s)
\]

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]

Conditional Probabilities

A simple relation between joint and conditional probabilities.

In fact, this is taken as the definition of a conditional probability:

\[
P(a | b) = \frac{P(a, b)}{P(b)}
\]

\[
P(W = r | T = c) = ???
\]
Conditional Distributions

Conditional distributions are probability distributions over some variables given fixed values of others.

<table>
<thead>
<tr>
<th></th>
<th>Conditional Distributions</th>
<th>Joint Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(W</td>
<td>T = \text{hot})$</td>
<td></td>
</tr>
<tr>
<td>$P(W</td>
<td>T = \text{cold})$</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

\[
P(T, W) \\
<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(T, r) \\
<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(T|r) \\
<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.25</td>
</tr>
<tr>
<td>cold</td>
<td>0.75</td>
</tr>
</tbody>
</table>

- Why does this work? Sum of selection is P(evidence)! ($P(r)$, here)

\[
P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \sum_{x_1} \frac{P(x_1, x_2)}{P(x_2)}
\]
Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities
 - \(P(\text{on time} \mid \text{no reported accidents}) = 0.90 \)
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - \(P(\text{on time} \mid \text{no accidents, 5 a.m.}) = 0.95 \)
 - \(P(\text{on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80 \)
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- \(P(\text{sun})? \)

- \(P(\text{sun} \mid \text{winter})? \)

- \(P(\text{sun} \mid \text{winter, warm})? \)

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>
Inference by Enumeration

- General case:
 - Evidence variables: \(E_1 \ldots E_k = e_1 \ldots e_k \)
 - Query* variable: \(Q \)
 - Hidden variables: \(H_1 \ldots H_r \)
 \[X_1, X_2, \ldots, X_n \]

- We want: \(P(Q|e_1 \ldots e_k) \)

- First, select the entries consistent with the evidence

- Second, sum out \(H \) to get joint of Query and evidence:

\[
P(Q, e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Q, h_1 \ldots h_r, e_1 \ldots e_k)
\]

- Finally, normalize the remaining entries to conditionalize

- Obvious problems:
 - Worst-case time complexity \(O(d^n) \)
 - Space complexity \(O(d^n) \) to store the joint distribution

The Product Rule

- Sometimes have conditional distributions but want the joint

\[
P(x|y) = \frac{P(x, y)}{P(y)} \quad \iff \quad P(x, y) = P(x|y)P(y)
\]

- Example:

\(P(W) \)	\(P(D	W) \)	\(P(D, W) \)	
R	P	D	W	P
sun	0.8	wet	sun	0.1
		dry	sun	0.9
		wet	rain	0.7
		dry	rain	0.3
rain	0.2	wet	sun	0.08
		dry	sun	0.72
		wet	rain	0.14
		dry	rain	0.16

* Works fine with multiple query variables, too
The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

\[
P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)
\]

\[
P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i|x_1 \ldots x_{i-1})
\]

- Why is this always true?

Bayes’ Rule

- Two ways to factor a joint distribution over two variables:

\[
P(x, y) = P(x|y)P(y) = P(y|x)P(x)
\]

- Dividing, we get:

\[
P(x|y) = \frac{P(y|x)}{P(y)}P(x)
\]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!
Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:

\[
P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}
\]

- Example:
 - m is meningitis, s is stiff neck
 - Note: posterior probability of meningitis still very small
 - Note: you should still get stiff necks checked out! Why?

<table>
<thead>
<tr>
<th>m (meningitis)</th>
<th>s (stiff neck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(s</td>
<td>m) = 0.8)</td>
</tr>
<tr>
<td>(P(m) = 0.0001)</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
\]

Ghostbusters, Revisited

- Let’s say we have two distributions:
 - Prior distribution over ghost location: \(P(G)\)
 - Let’s say this is uniform
 - Sensor reading model: \(P(R|G)\)
 - Given: we know what our sensors do
 - \(R = \) reading color measured at (1,1)
 - E.g. \(P(R = \text{yellow} | G=(1,1)) = 0.1\)

- We can calculate the posterior distribution \(P(G|r)\) over ghost locations given a reading using Bayes’ rule:

\[
P(g|r) \propto P(r|g)P(g)
\]
Independence

- Two variables are independent in a joint distribution if:

\[P(X, Y) = P(X)P(Y) \]
\[\forall x, y \ P(x, y) = P(x)P(y) \]

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!

- Can use independence as a modeling assumption
 - Independence can be a simplifying assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for (Weather, Traffic, Cavity)?

- Independence is like something from CSPs: what?

Example: Independence?

\[P(T) \]
\[P_1(T, W) \]
\[P_2(T, W) \]
\[P(W) \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>warm</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

<table>
<thead>
<tr>
<th></th>
<th>$P(X_1)$</th>
<th>$P(X_2)$</th>
<th>$P(X_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.5</td>
<td>H 0.5</td>
<td>H 0.5</td>
</tr>
<tr>
<td>T</td>
<td>0.5</td>
<td>T 0.5</td>
<td>T 0.5</td>
</tr>
</tbody>
</table>

$P(X_1, X_2, \ldots, X_n) = 2^n$