CS 188: Artificial Intelligence
Fall 2009

Lecture 20: Particle Filtering
11/5/2009

Dan Klein – UC Berkeley

Announcements

- Written 3 out: due 10/12
- Project 4 out: due 10/19

- Written 4 probably axed, Project 5 moving up

- Course contest update
 - Daily tournaments are now being run!
 - Instructions for registration on the website
 - Qualifying opens soon: 1% on final exam!
Recap: Reasoning Over Time

- Stationary Markov models

 \[P(X_1) \quad P(X|X_{t-1}) \]

- Hidden Markov models

 \[
 P(E|X) \quad \begin{array}{c|c|c}
 X & E & P \\
 \hline
 \text{rain} & \text{umbrella} & 0.9 \\
 \text{rain} & \text{no umbrella} & 0.1 \\
 \text{sun} & \text{umbrella} & 0.2 \\
 \text{sun} & \text{no umbrella} & 0.8 \\
 \end{array}
 \]

Recap: Filtering

- Elapse time: compute \(P(X_t|e_{1:t-1}) \)

 \[
 P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})
 \]

- Observe: compute \(P(X_t|e_{1:t}) \)

 \[
 P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)
 \]

Belief: \(<P(\text{rain}), P(\text{sun})>\)

\[
\begin{array}{c|c|c}
X_1 & P(X_1) & \text{Prior on } X_t \\
E_1 & P(X_1 | E_1 = \text{umbrella}) & \text{Observe} \\
E_2 & P(X_2 | E_1 = \text{umbrella}) & \text{Elapse time} \\
 & P(X_2 | E_1 = \text{umb}, E_2 = \text{umb}) & \text{Observe} \\
\end{array}
\]
Particle Filtering

- Filtering: approximate solution

- Sometimes $|X|$ is too big to use exact inference
 - $|X|$ may be too big to even store $B(X)$
 - E.g. X is continuous

- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states

- This is how robot localization works in practice

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling – samples’ frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)
Particle Filtering: Observe

- Slightly trickier:
 - We don’t sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence

\[w(x) = P(e|x) \]

\[B(X) \propto P(e|X)B'(X) \]

- Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample

- \(N \) times, we choose from our weighted sample distribution (i.e. draw with replacement)

- This is equivalent to renormalizing the distribution

- Now the update is complete for this time step, continue with the next one
Particle Filtering

- Sometimes $|X|$ is too big to use exact inference
 - $|X|$ may be too big to even store $B(X)$
 - E.g. X is continuous
 - $|X|^2$ may be too big to do updates

- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states

- This is how robot localization works in practice

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
 - Generally, $N << |X|
 - Storing map from X to counts would defeat the point

- $P(x)$ approximated by number of particles with value x
 - So, many x will have $P(x) = 0!$
 - More particles, more accuracy

- For now, all particles have a weight of 1
Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

\[x' = \text{sample}(P(X'|x)) \]

- This is like prior sampling – samples’ frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
 - Don’t do rejection sampling (why not?)
 - We don’t sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence

\[w(x) = P(e|x) \]

\[B(X) \propto P(e|X)B'(X) \]

- Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))
Particle Filtering: Resample

- Rather than tracking weighted samples, we resample.
- N times, we choose from our weighted sample distribution (i.e. draw with replacement).
- This is equivalent to renormalizing the distribution.
- Now the update is complete for this time step, continue with the next one.

Old Particles:
- (3,3) w=0.1
- (2,1) w=0.9
- (2,1) w=0.9
- (3,1) w=0.4
- (3,2) w=0.3
- (2,2) w=0.4
- (1,1) w=0.4
- (3,1) w=0.4
- (2,1) w=0.9
- (3,2) w=0.3

Robot Localization

- In robot localization:
 - We know the map, but not the robot’s position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique.

[Demos]
P4: Ghostbusters 2.0 (beta)

- **Plot:** Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- **Transition Model:** All ghosts move randomly, but are sometimes biased.
- **Emission Model:** Pacman knows a “noisy” distance to each ghost.

![Noisy distance prob](image)

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence.
- Idea: Repeat a fixed Bayes net structure at each time.
- Variables from time \(t \) can condition on those from \(t-1 \).

![Dynamic Bayes Nets Diagram](image)

- Discrete valued dynamic Bayes nets are also HMMs.
Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: “unroll” the network for T time steps, then eliminate variables until $P(X_T|e_{1:T})$ is computed

Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
 - Example particle: $G_1^a = (3,3)$ $G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3)$ $G_2^b = (6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) \cdot P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

[Demo]
SLAM

- SLAM = Simultaneous Localization And Mapping
 - We do not know the map or our location
 - Our belief state is over maps and positions!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

- [DEMOS]

DP-SLAM, Ron Parr