Recap: Reasoning Over Time

- Stationary Markov models
 \[P(X_t | X_{t-1}) \]

- Hidden Markov models
 \[P(E_t | X_t) \]

Recap: Filtering

- Elapse time:
 \[P(x_t | e_{t-1:t}) = \sum_{x_{t-1}} P(x_{t-1} | e_{t-1:t-1}) \cdot P(x_t | x_{t-1}) \]

- Observe:
 \[P(x_t | e_{t-1:t}) \propto P(x_t | e_{t-1:t}) \cdot P(e_t | x_t) \]

Particle Filtering

- Filtering: approximate solution
 - Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(x)
 - E.g. X is continuous
 - Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
 - This is how robot localization works in practice

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model
 \[d' = \text{sample}(P(X_t | x_t)) \]

- This is like prior sampling – samples’ frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)
Slightly trickier:
- We don’t sample the observation, we fix it
- This is similar to likelihood weighting, so we downweight our samples based on the evidence

 \[w(x) = P(e|x) \]

 \[B(X) \propto P(o|X)B'(X) \]

- Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))

Particle Filtering: Observe
- Rather than tracking weighted samples, we resample
- \(N \) times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particle Filtering: Resample
- Sometimes \(|X| \) is too big to use exact inference
 - \(|X| \) may be too big to even store \(B(X) \)
 - E.g. \(X \) is continuous
 - \(X^2 \) may be too big to do updates
- Solution: approximate inference
 - Track samples of \(X \), not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

Particle Filtering: Elapse Time
- Each particle is moved by sampling its next position from the transition model

 \[x' = \text{sample}(P(X'|x)) \]

- This is like prior sampling – samples’ frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe
- Slightly trickier:
 - Don’t do rejection sampling (why not?)
 - We don’t sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence

 \[w(x) = P(e|x) \]

 \[B(X) \propto P(o|X)B'(X) \]

- Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of \(P(e) \))
Particle Filtering: Resample

- Rather than tracking weighted samples, we resample.
- N times, we choose from our weighted sample distribution (i.e., draw with replacement).
- This is equivalent to renormalizing the distribution.
- Now the update is complete for this time step, continue with the next one.

Old Particles:

- (3, 3) \(w = 0.1\)
- (2, 1) \(w = 0.9\)
- (3, 1) \(w = 0.4\)
- (2, 2) \(w = 0.4\)
- (1, 1) \(w = 0.4\)
- (3, 2) \(w = 0.3\)

New Particles:

- (2, 1) \(w = 1\)
- (2, 1) \(w = 1\)
- (2, 1) \(w = 1\)
- (3, 2) \(w = 1\)
- (2, 2) \(w = 1\)
- (2, 1) \(w = 1\)
- (1, 1) \(w = 1\)
- (3, 1) \(w = 1\)
- (2, 1) \(w = 1\)
- (1, 1) \(w = 1\)

Robot Localization

- In robot localization:
 - We know the map, but not the robot’s position.
 - Observations may be vectors of range finder readings.
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store \(B(X)\).
 - Particle filtering is a main technique.

P4: Ghostbusters 2.0 (beta)

- **Plot:** Pacman’s grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts’ banging and clanging.
- **Transition Model:** All ghosts move randomly, but are sometimes biased.
- **Emission Model:** Pacman knows a “noisy” distance to each ghost.

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence.
- Idea: Repeat a fixed Bayes net structure at each time.
- Variables from time \(t\) can condition on those from \(t-1\).
- Discrete valued dynamic Bayes nets are also HMMs.

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets.
- Procedure: “unroll” the network for \(T\) time steps, then eliminate variables until \(P(X_t|e_1:T)\) is computed.

Dynamic Bayes Nets (DBNs)

- **Plot:** Pacman’s grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts’ banging and clanging.
- **Transition Model:** All ghosts move randomly, but are sometimes biased.
- **Emission Model:** Pacman knows a “noisy” distance to each ghost.

DBN Particle Filters

- A particle is a complete sample for a time step.
- **Initialize:** Generate prior samples for the \(t=1\) Bayes net.
 - Example particle: \(G_1^a = (3, 3)\) \(G_1^b = (5, 3)\).
- **Elapse time:** Sample a successor for each particle.
 - Example successor: \(G_2^a = (2, 3)\) \(G_2^b = (6, 3)\).
- **Observe:** Weight each entire sample by the likelihood of the evidence conditioned on the sample.
 - Likelihood: \(P(E_t^a|G_t^a) \times P(E_t^b|G_t^b)\).
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood.

[Demo]
SLAM

- SLAM = Simultaneous Localization And Mapping
 - We do not know the map or our location
 - Our belief state is over maps and positions!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

- [DEMOS]

DP-SLAM, Ron Parr