CS 188: Artificial Intelligence
Spring 2010

Lecture 10: MDPs
2/18/2010

Pieter Abbeel – UC Berkeley
Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Announcements

- P2: Due tonight
- W3: Expectimax, utilities and MDPs---out tonight, due next Thursday.
- Online book: Sutton and Barto
Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0

- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state
 - Q-Values = expected future utility from a q-state

Recap MPD Example: Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small “living” reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards
Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Iteration

- Idea:
 - $V^*(s)$: the expected discounted sum of rewards accumulated when starting from state s and acting optimally for a horizon of i time steps.
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V^*_i, calculate the values for all states for horizon $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*_i(s') \right]
 \]
 - This is called a value update or Bellman update
 - Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Bellman Updates

\[V_{i+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \]

\[V_2((3, 3)) = \sum_{s'} T((3, 3), \text{right}, s') \left[R((3, 3)) + 0.9 V_1(s') \right] \]

\[\text{max happens for } a=\text{right, other actions not shown} \]

\[= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right] \]

Convergence*

- Define the max-norm: \(||U|| = \max_s |U(s)| \)

- Theorem: For any two approximations \(U \) and \(V \)

\[||U_{i+1} - V_{i+1}|| \leq \gamma ||U_i - V_i|| \]

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true \(U \) and value iteration converges to a unique, stable, optimal solution

- Theorem:

\[||U_{i+1} - U|| < \epsilon, \Rightarrow ||U_{i+1} - U|| < 2\epsilon \gamma/(1 - \gamma) \]

- I.e. once the change in our approximation is small, it must also be close to correct
At Convergence

- At convergence, we have found the optimal value function V^* for the discounted infinite horizon problem, which satisfies the Bellman equations:

$$\forall s \in S : \quad V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Practice: Computing Actions

- Which action should we choose from state s:
 - Given optimal values V?
 $$\arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$
 - Given optimal q-values Q?
 $$\arg \max_a Q^*(s, a)$$

- Lesson: actions are easier to select from Q’s!
Complete procedure

- 1. Run value iteration (off-line)
 \(\rightarrow\) Returns \(V\), which (assuming sufficiently many iterations is a good approximation of \(V^*\))

- 2. Agent acts. At time \(t\) the agent is in state \(s_t\) and takes the action \(a_t\):

\[
\arg \max_a \sum_{s'} T(s_t, a, s') \left[R(s_t, a, s') + \gamma V^*(s') \right]
\]

1. **Offline**

 \(V_0(s) = 0 \forall s\)

 for \(i = 0, 1, 2, 3, \ldots\)

 for all \(s\):

 \(V_{i+1}(s) = \frac{1}{\pi} \sum_a T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]\)

 if \(\|V_{i+1} - V_i\| < \varepsilon\)

 break and return \(V_{i+1} \approx V^*\)

2. **Choosing actions online**

 Observe current state \(s_t\) and compute \(a_t = \arg \max_a \sum_{s'} T(s_t, a, s') \left[R(s_t, a, s') + \gamma V^*(s') \right]\)
Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fixed (general non-optimal) policy.

- Define the utility of a state s, under a fixed policy π:
 \[V^\pi(s) = \text{expected total discounted rewards (return) starting in } s \text{ and following } \pi \]

- Recursive relation (one-step lookahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')] \]

Policy Evaluation

- How do we calculate the V’s for a fixed policy?

- Idea one: modify Bellman updates
 \[V^0_0(s) = 0 \]
 \[V^\pi_{i+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_i(s')] \]

- Idea two: it’s just a linear system, solve with Matlab (or whatever)
Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

\[
V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]
\]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

\[
\pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]
\]
Comparison

- In value iteration:
 - Every pass (or “backup”) updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies

- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration

- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often

- In fact, we can update the policy as seldom or often as we like, and we will still converge

- Idea: Update states whose value we expect to change:
 If $|V_{s_{k+1}}(s) - V_1(s)|$ is large then update predecessors of s
MDPs recap

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0

- **Solution methods:**
 - Value iteration (VI)
 - Policy iteration (PI)
 - Asynchronous value iteration

- **Current limitations:**
 - Relatively small state spaces
 - Assumes T and R are known