Announcements

- P0 / P1 / W1 / W2 in gloo kup
 - If you have no entry, etc, email staff list!
 - If you have questions, see one of us or email list.
 - W1, W2: can be picked up from 188 return box in 283 Soda

- W3: Utilities --- Due Thursday.

- Recall: readings for current material
 - Online book: Sutton and Barto
Announcements II

- Section:
 - 101: Tue 3-4pm, 285 Cory
 - 104: Tue 4-5pm, 285 Cory
 - 102: Wed 11-noon, 285 Cory
 - 103: Wed noon-1pm, 285 Cory

MDPs recap

- Markov decision processes:
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0 ($\gamma \in (0,1)$)

- Solution methods:
 - Value iteration (VI)
 - Policy iteration (PI)
 - Asynchronous value iteration

- Current limitations:
 - Relatively small state spaces
 - Assumes T and R are known
MDP Example: Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Rewards come at the end
- Goal: maximize sum of rewards

\[
\text{MDP} = (S, A, T, R, s_0, \gamma)
\]

Set of states \(S\):
- \((1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\)
- \((s, a, s')\)

Set of actions \(A\):
- \(\{N, E, S, W\}\)

Transition model \(T\):
- \(T((1,1), N, (1,2)) = 0.8\)
- \(T((1,1), N, (2,1)) = 0.1\)
- \(T((1,1), N, (1,1)) = 0.1\)
- \(T((1,1), N, (1,3)) = 0\)
- \(T((1,1), N, (4,1)) = 0\)

Initial state \(s_0\):
- \((1,1)\)

Discount factor \(\gamma\):
- \(0.9\)

Rewards \(R\):
- \(R((x, y), a, (x, y)) = +1\)
- \(R((x, y), a, (4,2)) = -1\)
- \(R = 0\) for all other cases
Value Iteration

- **Idea:**
 - $V_i(s)$: the expected discounted sum of rewards accumulated when starting from state s and acting optimally for a horizon of i time steps.
 - Start with $V_0(s) = 0$, which we know is right (why?)
 - Given V_i, calculate the values for all states for horizon $i+1$:
 $$V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$
 - This is called a value update or Bellman update
 - Repeat until convergence

- **Theorem:** will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Complete procedure

1. Run value iteration (off-line)
 Returns V, which (assuming sufficiently many iterations is a good approximation of V^*)

2. Agent acts.
 At time t the agent is in state s_t and takes the action a_t:
 $$\arg \max_a \sum_{s'} T(s_t, a, s') \left[R(s_t, a, s') + \gamma V(s') \right]$$
MDPs recap

- **Markov decision processes:**
 - States S
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)
 - Start state s_0

- **Solution methods:**
 - Value iteration (VI)
 - Policy iteration (PI)
 - Asynchronous value iteration

- **Current limitations:**
 - Assumes T and R are known
 - Relatively small state spaces

Reinforcement Learning

- **Reinforcement learning:**
 - Still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$
 - New twist: **don’t know T or R**
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: learning to walk

Before learning (hand-tuned) One of many learning runs After learning
[After 1000 field traversals]

[Kohl and Stone, ICRA 2004]

Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You are given a policy $\pi(s)$
 - Goal: learn the state values
 - ... what policy evaluation did

- **In this case:**
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon

This is NOT offline planning! You actually take actions in the world and see what happens…
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

$$
V_{t+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_t^\pi(s') \right] + \gamma V_t^\pi(s)
$$

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- Simple empirical model learning
 - Count outcomes for each s, a
 - Normalize to give estimate of $T(s, a, s')$
 - Discover $R(s, a, s')$ when we experience (s, a, s')

- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$
V_{t+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_t^\pi(s') \right]
$$
Example: Model-Based Learning

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (1,1) up -1
 - (1,2) up -1
 - (2,3) right -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit +100
 - (1,1) up -1
 - (1,2) up -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit +100
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit -100
 - (1,1) up -1
 - (1,2) up -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit +100
 - (3,3) right -1
 - (3,2) up -1
 - (4,2) exit -100

Model-Free Learning

- Want to compute an expectation weighted by P(x):
 \[E[f(x)] = \sum_x P(x) f(x) \]
- Model-based: estimate P(x) from samples, compute expectation
 \[x_i \sim P(x) \]
 \[\hat{P}(x) = \text{count}(x)/k \]
 \[E[f(x)] \approx \sum_x \hat{P}(x) f(x) \]
- Model-free: estimate expectation directly from samples
 \[x_i \sim P(x) \]
 \[E[f(x)] \approx \frac{1}{k} \sum_i f(x_i) \]
- Why does this work? Because samples appear with the right frequencies!
Example: Direct Estimation

- **Episodes:**
 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up +1
 - (4,2) exit -100
 - (4,3) exit +100
 - (done)

\[V(3,3) \approx \frac{99 + 97 + (-102)}{3} = 31.3 \]

\[V((2,1), \gamma) = \frac{1}{2} \left(96 + (-103) \right) = -3.5 \]

\[V((3,2), \gamma) = \frac{1}{3} \left(96 + 93 + (-102) \right) = 31.3 \]

Sample-Based Policy Evaluation?

- \(V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_i^{\pi}(s') \right] \)

- Who needs \(T \) and \(R \)? Approximate the expectation with samples (drawn from \(T \)!

\[sample_1 = R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1) \]

\[sample_2 = R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2) \]

\[\ldots \]

\[sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k) \]

\[V_{i+1}^{\ominus}(s) \leftarrow \frac{1}{k} \sum_{i} sample_i \]

Almost! But we only actually make progress when we move to \(i + 1 \).
Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha(sample)$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

- Decreasing learning rate can give converging averages
Policy evaluation when \(T \) (and \(R \)) unknown --- recap

- **Model-based:**
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- **Model-free:**
 - Direct estimation:
 - \(V(s) = \) sample estimate of sum of rewards accumulated from state \(s \) onwards
 - Temporal difference (TD) value learning:
 - Move values toward value of whatever successor occurs; running average!
 \[
 \begin{align*}
 \text{sample} &= R(s, \pi(s), s') + \gamma \hat{V}(s') - \alpha \hat{V}(s) \\
 V^\pi(s) &\leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample}
 \end{align*}
 \]